Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption

We report a new colloidal synthesis of niobium-doped TiO2 anatase nanocrystals (NCs) that allows for the preparation of ∼10 nm NCs with control over the amount of Nb doping up to ∼14%. The incorporation of niobium ions leads to the appearance of a tunable, broad absorption peak that ranges from the visible range to the mid-infrared. This optical behavior is attributed to the substitution of Nb5+ on Ti4+ sites generating free carriers inside the conduction band of the TiO2 NCs as supported by optical and electron paramagnetic resonance spectroscopic investigations. At the same time, the incorporation of progressively more niobium ions drives an evolution of the shape of the NCs from tetragonal platelets to “peanutlike” rods.

[1]  A. Kaiser,et al.  Niobia Based Rutile Materials as SOFC Anodes , 2001 .

[2]  B. Smarsly,et al.  Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion , 2010 .

[3]  W. Lan,et al.  Optical and structural properties of TiO2 films as a function of Nb doping concentration , 2011 .

[4]  Yasushi Sato,et al.  Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2-x target , 2008 .

[5]  Yujing Liu,et al.  Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. , 2010, ACS nano.

[6]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[7]  Taro Hitosugi,et al.  Properties of TiO2‐based transparent conducting oxides , 2010 .

[8]  T. Hitosugi,et al.  Properties of TiO2-based transparent conducting oxide thin films on GaN(0001) surfaces , 2010 .

[9]  T. Hitosugi,et al.  Low-temperature Fabrication of Transparent Conducting Anatase Nb-doped TiO2 Films by Sputtering , 2008 .

[10]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[11]  M. Grätzel,et al.  EPR observation of trapped electrons in colloidal titanium dioxide , 1985 .

[12]  A. Mattsson,et al.  Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. , 2006, The journal of physical chemistry. B.

[13]  M. Hirano,et al.  Photoactive and Adsorptive Niobium‐Doped Anatase (TiO2) Nanoparticles: Influence of Hydrothermal Conditions on their Morphology, Structure, and Properties , 2006 .

[14]  T. Yagi,et al.  Thermophysical Properties of Transparent Conductive Nb-Doped TiO2 Films , 2012 .

[15]  J. Grdadolnik,et al.  In situ UV-Vis and ex situ IR spectroelectrochemical investigations of amorphous and crystalline electrochromic Nb2O5 films in charged/discharged states , 1998 .

[16]  P. Fornasiero,et al.  Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. , 2012, Journal of the American Chemical Society.

[17]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[18]  B. Robinson,et al.  Room-temperature electron spin dynamics in free-standing ZnO quantum dots. , 2007, Physical review letters.

[19]  T. Chikyow,et al.  Effect of niobium doping on the optical and electrical properties in titanium dioxide grown by pulsed laser deposition , 2012 .

[20]  Kug‐Seung Lee,et al.  Synthesis of nanobranched TiO2 nanotubes and their application to dye-sensitized solar cells , 2013 .

[21]  A. Cornet,et al.  Insights into the Structural and Chemical Modifications of Nb Additive on TiO2 Nanoparticles , 2004 .

[22]  A. Tao,et al.  Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. , 2011, Journal of the American Chemical Society.

[23]  Jordi Arbiol,et al.  Effects of Nb doping on the TiO2 anatase-to-rutile phase transition , 2002 .

[24]  D. Milliron,et al.  Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory , 2012 .

[25]  M. Casarin,et al.  Photoemission and STM study of the electronic structure of Nb-doped TiO2 , 2000 .

[26]  H. Ohta,et al.  Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures , 2006 .

[27]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[28]  K. Yamashita,et al.  Density functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstitial oxygen. , 2009, The Journal of chemical physics.

[29]  D. Gamelin,et al.  Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. , 2004, Journal of the American Chemical Society.

[30]  A. Tiwari,et al.  High mobility transparent conducting oxides for thin film solar cells , 2010 .

[31]  Z. Ye,et al.  Dopant induced shape evolution of colloidal nanocrystals: The case of zinc oxide , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[32]  T. Minami Transparent conducting oxide semiconductors for transparent electrodes , 2005 .

[33]  Sumei Huang,et al.  Improved‐Performance Dye‐Sensitized Solar Cells Using Nb‐Doped TiO2 Electrodes: Efficient Electron Injection and Transfer , 2010 .

[34]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[35]  Paul I. Archer,et al.  Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale. , 2007, Journal of the American Chemical Society.

[36]  Yanhong Luo,et al.  Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells , 2012 .

[37]  T. Berger,et al.  The electrochemistry of nanostructured titanium dioxide electrodes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[38]  N. Murafa,et al.  Niobium and tantalum doped titania particles , 2010 .

[39]  S. Ogale,et al.  Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase , 2007 .

[40]  M. Brett,et al.  Electron beam deposited Nb-doped TiO2 toward nanostructured transparent conductive thin films , 2012 .

[41]  M. Otani,et al.  Transport properties of d-electron-based transparent conducting oxide: Anatase Ti1−xNbxO2 , 2007 .

[42]  B. Park,et al.  Preparation and Optical Properties of Colloidal, Monodisperse, and Highly Crystalline ITO Nanoparticles , 2008 .

[43]  Guozhong Cao,et al.  Applications of light scattering in dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[44]  James S. Speck,et al.  Prospects for LED lighting , 2009 .

[45]  M. Haemori,et al.  Transparent semiconducting Nb-doped anatase TiO2 films deposited by helicon-wave-excited-plasma sputtering , 2011 .

[46]  M. Han,et al.  Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. , 2005, Angewandte Chemie.

[47]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[48]  D. Milliron,et al.  Comparison of extra electrons in colloidal n-type Al(3+)-doped and photochemically reduced ZnO nanocrystals. , 2012, Chemical communications.

[49]  D. Gamelin,et al.  Activation of high-TC ferromagnetism in Co2+:TiO2 and Cr3+:TiO2 nanorods and nanocrystals by grain boundary defects. , 2005, Journal of the American Chemical Society.

[50]  Jin Young Kim,et al.  Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells , 2009 .

[51]  K. Ahn,et al.  Optimization of Experimental Parameters to Suppress Nozzle Clogging in Inkjet Printing , 2012 .

[52]  Vo-Van Truong,et al.  Highly-efficient electrochromic performance of nanostructured TiO2 films made by doctor blade technique , 2011 .

[53]  T. Hitosugi,et al.  Direct growth of transparent conducting Nb-doped anatase TiO2 polycrystalline films on glass , 2009 .

[54]  M. Hirano,et al.  Phase transformation and precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 nanoparticles synthesized via hydrothermal crystallization , 2009 .

[55]  H. Kumigashira,et al.  Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2 , 2008 .

[56]  Taro Hitosugi,et al.  A transparent metal: Nb-doped anatase TiO2 , 2005 .

[57]  Naoto Kikuchi,et al.  Preparation of transparent conductive TiO2: Nb thin films by pulsed laser deposition , 2009 .

[58]  David S. Ginley,et al.  Transparent Conducting Oxides , 2000 .

[59]  E. Fortunato,et al.  Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications , 2008 .

[60]  W. S. Li,et al.  Grain size dependence of electrical and optical properties in Nb-doped anatase TiO2 , 2009 .

[61]  Shui-Tong Lee,et al.  Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices , 2003 .

[62]  A. Fujishima,et al.  Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films , 2012 .

[63]  Delia J. Milliron,et al.  Chemistry of Doped Colloidal Nanocrystals , 2013 .