Relevance-Based Language Models

We explore the relation between classical probabilistic models of information retrieval and the emerging language modeling approaches. It has long been recognized that the primary obstacle to effective performance of classical models is the need to estimate a relevance model: probabilities of words in the relevant class. We propose a novel technique for estimating these probabilities using the query alone. We demonstrate that our technique can produce highly accurate relevance models, addressing important notions of synonymy and polysemy. Our experiments show relevance models outperforming baseline language modeling systems on TREC retrieval and TDT tracking tasks. The main contribution of this work is an effective formal method for estimating a relevance model with no training data.

[1]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[2]  Van Rijsbergen,et al.  A theoretical basis for the use of co-occurence data in information retrieval , 1977 .

[3]  W. Bruce Croft,et al.  Efficient probabilistic Inference for text retrieval , 1991, RIAO.

[4]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[5]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[6]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[7]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[8]  S. Robertson The probability ranking principle in IR , 1997 .

[9]  Alvin F. Martin,et al.  The DET curve in assessment of detection task performance , 1997, EUROSPEECH.

[10]  R. Papka,et al.  On-line new event detection and tracking , 1998, SIGIR '98.

[11]  Richard M. Schwartz,et al.  A hidden Markov model information retrieval system , 1999, SIGIR '99.

[12]  Jonathan Yamron,et al.  Topic Tracking in a News Stream , 1999 .

[13]  James Allan,et al.  INQUERY and TREC-8 , 1998, TREC.

[14]  Mark Liberman,et al.  THE TDT-2 TEXT AND SPEECH CORPUS , 1999 .

[15]  W. Bruce Croft,et al.  A general language model for information retrieval (poster abstract) , 1999, SIGIR '99.

[16]  John D. Lafferty,et al.  Information Retrieval as Statistical Translation , 2017 .

[17]  W. Bruce Croft,et al.  A general language model for information retrieval , 1999, CIKM '99.

[18]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[19]  Richard M. Schwartz,et al.  Topic tracking for radio, TV broadcast, and newswire , 1999, EUROSPEECH.

[20]  Vibhu O. Mittal,et al.  Bridging the lexical chasm: statistical approaches to answer-finding , 2000, SIGIR '00.

[21]  Ellen M. Voorhees,et al.  The Eighth Text REtrieval Conference (TREC-8) , 2000 .

[22]  Djoerd Hiemstra,et al.  Relating the new language models of information retrieval to the traditional retrieval models , 2000 .

[23]  Jonathan Yamron,et al.  Dragon's Tracking and Detection Systems for the TDT2000 Evaluation , 2000 .

[24]  Vibhu O. Mittal,et al.  OCELOT: a system for summarizing Web pages , 2000, SIGIR '00.

[25]  W. Bruce Croft,et al.  Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.

[26]  Djoerd Hiemstra,et al.  Using language models for information retrieval , 2001 .

[27]  John D. Lafferty,et al.  Statistical Models for Text Segmentation , 1999, Machine Learning.

[28]  W. Bruce Croft,et al.  A Language Modeling Approach to Information Retrieval , 1998, SIGIR Forum.