LMI approximations for the radius of the intersection of ellipsoids

This paper addresses the problem of evaluating the maximum norm vector within the intersection of several ellipsoids. This difficult nonconvex optimization problem frequently arises in robust control synthesis. Linear matrix inequality relaxations of the problem are enumerated. A randomized algorithm and several ellipsoidal approximations are proposed. Guaranteed approximation bounds are derived in order to evaluate the quality of these relaxations.

[1]  Tamás Terlaky,et al.  On maximization of quadratic form over intersection of ellipsoids with common center , 1999, Math. Program..

[2]  Vladimír Kučera,et al.  Diophantine equations in control - A survey , 1993, Autom..

[3]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[4]  Peter M. Young,et al.  Infinite-dimensional convex optimization in optimal and robust control theory , 1997, IEEE Trans. Autom. Control..

[5]  J. Tsitsiklis,et al.  NP-Hardness of Some Linear Control Design Problems , 1997 .

[6]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[7]  J. Norton,et al.  State bounding with ellipsoidal set description of the uncertainty , 1996 .

[8]  Yinyu Ye,et al.  Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..

[9]  Biswa Nath Datta,et al.  On Bezoutians, Van der Monde matrices, and the Lienard-Chipart stability criterion , 1989 .

[10]  Stephen P. Boyd,et al.  Method of centers for minimizing generalized eigenvalues , 1993, Linear Algebra and its Applications.

[11]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[12]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[13]  S. Tarbouriech,et al.  Algebraic approach to robust controller design: a geometric interpretation , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[14]  Eric Walter,et al.  Trace Versus Determinant in Ellipsoidal Outer-Bounding, with Application to State Estimation , 1996 .

[15]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[16]  Charles D. Schaper,et al.  Communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath , 1997 .

[17]  Zhi-Quan Luo,et al.  Approximation Algorithms for Quadratic Programming , 1998, J. Comb. Optim..

[18]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[19]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[20]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[21]  S. Tarbouriech,et al.  Rank-one LMI approach to simultaneous stabilization of linear systems , 1999, 1999 European Control Conference (ECC).

[22]  A. J. Quist,et al.  Copositive realxation for genera quadratic programming , 1998 .