A Class of Arc-Transitive Cayley Graphs as Models for Interconnection Networks

We study a class of Cayley graphs as models for interconnection networks. With focus on efficient communication we prove that for any graph in the class there exists a gossiping protocol which exhibits attractive features, and, moreover, we give an algorithm for constructing such a protocol. In particular, these hold for two important subclasses of graphs, namely, Cayley graphs admitting a complete rotation and Frobenius graphs of a certain type. For such Frobenius graphs, we obtain the minimum gossip time and give an optimal gossiping protocol under which messages are transmitted along shortest paths and each arc is used exactly once at each time step. Moreover, for such Frobenius graphs we construct an all-to-all shortest path routing that is arc-transitive, edge- and arc-uniform, and optimal for the edge- and arc-forwarding indices simultaneously.

[1]  Marie-Claude Heydemann,et al.  Cayley graphs and interconnection networks , 1997 .

[2]  Patrick SoK The edge-forwarding index of orbital regular graphs , 1994 .

[3]  Cheryl E. Praeger,et al.  Finding Optimal Routings in Hamming Graphs , 2002, Eur. J. Comb..

[4]  Jozef Sirán,et al.  Skew-morphisms of regular Cayley maps , 2002, Discret. Math..

[5]  Selim G. Akl,et al.  Optimal Communication Primitives on the Generalized Hypercube Network , 1996, J. Parallel Distributed Comput..

[6]  Stéphane Pérennes,et al.  Complete Rotations in Cayley Graphs , 2001, Eur. J. Comb..

[7]  Cheryl E. Praeger,et al.  On orbital regular graphs and frobenius graphs , 1998, Discret. Math..

[8]  Richard M. Stafford,et al.  Processor Interconnection Networks from Cayley Graphs , 1992, Discret. Appl. Math..

[9]  Frank K. Hwang,et al.  A survey on multi-loop networks , 2003, Theor. Comput. Sci..

[10]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[11]  Selim G. Akl,et al.  Spanning subgraphs with applications to communication on a subclass of the Cayley-graph-based networks , 1998, Discret. Appl. Math..

[12]  Gene Cooperman,et al.  New Methods for Using Cayley Graphs in Interconnection Networks , 1992, Discret. Appl. Math..

[13]  Selim G. Akl,et al.  Communication and fault tolerance algorithms on a class of interconnection networks , 1995 .

[14]  S. Lakshmivarahan,et al.  Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey , 1993, Parallel Comput..

[15]  Juraj Hromkovič,et al.  Dissemination of Information in Interconnection Networks (Broadcasting & Gossiping) , 1996 .

[16]  Sanming Zhou,et al.  FROBENIUS CIRCULANT GRAPHS OF VALENCY FOUR , 2008, Journal of the Australian Mathematical Society.

[17]  Patrick Solé,et al.  The edge-forwarding index of orbital regular graphs , 1994, Discret. Math..

[18]  Stéphane Pérennes,et al.  Gossiping in Cayley Graphs by Packets , 1995, Combinatorics and Computer Science.

[19]  Sanming Zhou,et al.  Gossiping and routing in undirected triple-loop networks , 2010 .

[20]  Marie-Claude Heydemann,et al.  On forwarding indices of networks , 1989, Discret. Appl. Math..

[21]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[22]  Randall Dougherty,et al.  The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..

[23]  Chris D. Godsil,et al.  On the full automorphism group of a graph , 1981, Comb..

[24]  Sanming Zhou,et al.  Gossiping and routing in undirected triple‐loop networks , 2010, Networks.

[25]  Arnold L. Rosenberg,et al.  Group Action Graphs and Parallel Architectures , 1990, SIAM J. Comput..

[26]  Kyung-Yong Chwa,et al.  Recursive circulants and their embeddings among hypercubes , 2000, Theor. Comput. Sci..

[27]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[28]  J. Dixon,et al.  Permutation Groups , 1996 .

[29]  Stéphane Pérennes,et al.  Lower Bounds on the Broadcasting and Gossiping Time of Restricted Protocols , 2004, SIAM J. Discret. Math..