THE ARAUCARIA PROJECT: THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM NEAR-INFRARED PHOTOMETRY OF RR LYRAE VARIABLES

We have obtained deep infrared J- and K-band observations of nine 4.9 × 4.9 arcmin fields in the Small Magellanic Cloud (SMC) with the ESO New Technology Telescope equipped with the SOFI infrared camera. In these fields, 34 RR Lyrae stars cataloged by the OGLE collaboration were identified. Using different theoretical and empirical calibrations of the infrared period–luminosity–metallicity relation, we find consistent SMC distance moduli, and find a best true distance modulus to the SMC of 18.97 ± 0.03 (statistical) ±0.12 (systematic) mag, which agrees well with most independent distance determinations to this galaxy, and puts the SMC 0.39 mag more distant than the Large Magellanic Cloud for which our group has recently derived, from the same technique, a distance of 18.58 mag.

[1]  O. Szewczyk,et al.  THE ARAUCARIA PROJECT: THE DISTANCE TO THE SCULPTOR GALAXY NGC 247 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES , 2009, 0905.2699.

[2]  R. Kudritzki,et al.  The Araucaria Project: The Local Group Galaxy WLM—Distance and Metallicity from Quantitative Spectroscopy of Blue Supergiants , 2008, 0805.3555.

[3]  R. Kudritzki,et al.  THE ARAUCARIA PROJECT: THE DISTANCE TO THE SCULPTOR DWARF SPHEROIDAL GALAXY FROM INFRARED PHOTOMETRY OF RR LYRAE STARS , 2008, 0804.0347.

[4]  Universidad de Concepcion,et al.  Quantitative Spectroscopy of 24 A Supergiants in the Sculptor Galaxy NGC 300: Flux-weighted Gravity-Luminosity Relationship, Metallicity, and Metallicity Gradient , 2008, 0803.3654.

[5]  V. M. Larionov,et al.  The infrared JHK light curves of RR Lyr , 2007, 0712.0578.

[6]  B. Schaefer A PROBLEM WITH THE CLUSTERING OF RECENT MEASURES OF THE DISTANCE TO THE LARGE MAGELLANIC CLOUD , 2007, 0709.4531.

[7]  D. Bersier,et al.  A New Calibration Of Galactic Cepheid Period-Luminosity Relations From B To K Bands, And A Comparison To LMC Relations , 2007, 0709.3255.

[8]  E. Valenti,et al.  The RR Lyrae period–K-luminosity relation for globular clusters: an observational approach★ , 2006, astro-ph/0608397.

[9]  M. Nonino,et al.  A Pulsational Distance to ω Centauri Based on Near-Infrared Period-Luminosity Relations of RR Lyrae Stars , 2006, astro-ph/0608052.

[10]  W. Gieren,et al.  The Araucaria Project , 2005, astro-ph/0509688.

[11]  W. Gieren,et al.  Direct Distances to Cepheids in the Large Magellanic Cloud: Evidence for a Universal Slope of the Period-Luminosity Relation up to Solar Abundance , 2005, astro-ph/0503637.

[12]  R. Kudritzki,et al.  The Araucaria Project . Near-Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC , 2005 .

[13]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[14]  D. Minniti,et al.  Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud. II. The extended sa , 2004, astro-ph/0609209.

[15]  V. Castellani,et al.  RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions , 2004, astro-ph/0407256.

[16]  M. Catelan,et al.  The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration , 2004, astro-ph/0406067.

[17]  Telescopio Nazionale Galileo,et al.  Metal abundances of RR Lyrae stars in the bar of the Large Magellanic Cloud , 2004, astro-ph/0405412.

[18]  V. Ripepi,et al.  The Distance to the Large Magellanic Cloud Cluster Reticulum from the K-Band Period-Luminosity-Metallicity Relation of RR Lyrae Stars , 2004, astro-ph/0404098.

[19]  M. Marconi,et al.  A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars , 2003, astro-ph/0306142.

[20]  G. Bono RR Lyrae Distance Scale: Theory and Observations , 2003, astro-ph/0305102.

[21]  A. Walker Distances to Local Group Galaxies , 2003, astro-ph/0303011.

[22]  W. Gieren,et al.  The Araucaria Project: Dependence of Mean K, J, and I Absolute Magnitudes of Red Clump Stars on Metallicity and Age , 2003, astro-ph/0302134.

[23]  M. Feast Current Uncertainties in the Use of Cepheids as Distance Indicators , 2003, astro-ph/0301100.

[24]  Danielle Alloin,et al.  Stellar candles for the extragalactic distance scale , 2003 .

[25]  R. Kudritzki,et al.  A New Extragalactic Distance Determination Method Using the Flux-weighted Gravity of Late B and Early A Supergiants , 2002, astro-ph/0212042.

[26]  W. Gieren,et al.  The ARAUCARIA Project: Deep Near-Infrared Survey of Nearby Galaxies. I. The Distance to the Large Magellanic Cloud from K-Band Photometry of Red Clump Stars , 2002, astro-ph/0208162.

[27]  M. Skrutskie,et al.  Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator δ Cephei , 2002, astro-ph/0206214.

[28]  N. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002, astro-ph/0205161.

[29]  A. Udalski,et al.  Photometric Standard Stars in the BVI System in a Wide Field Centered on the Spiral Galaxy NGC 300 , 2002, astro-ph/0202371.

[30]  W. Gieren,et al.  The ARAUCARIA Project: Discovery of Cepheid Variables in NGC 300 from a Wide-Field Imaging Survey , 2002 .

[31]  Ata Sarajedini,et al.  WIYN Open Cluster Study. X. The K-Band Magnitude of the Red Clump as a Distance Indicator , 2001, astro-ph/0112251.

[32]  M. Marconi,et al.  Theoretical insights into the RR Lyrae K-band period–luminosity relation , 2001, astro-ph/0105481.

[33]  S. Leggett,et al.  JHK standard stars for large telescopes: the UKIRT Fundamental and Extended lists , 2001, astro-ph/0102287.

[34]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[35]  Mario Mateo,et al.  Deep Hubble Space Telescope Imaging of IC 1613. I. Variable Stars and Distance , 2000, astro-ph/0012150.

[36]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[37]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[38]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[39]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[40]  Bruce W. Carney,et al.  TEMPLATE K LIGHT CURVES FOR RR LYRAE STARS , 1996 .

[41]  J. Nemec,et al.  Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars , 1994 .

[42]  R. F. Jameson,et al.  The absolute magnitudes of RR Lyrae stars – V. WY Antliae, W Crateris, RV Octantis and BB Puppis , 1993 .

[43]  W. Gieren,et al.  A distance to the Cepheid HV 829 in the Small Magellanic Cloud , 1993 .

[44]  K. Janes,et al.  The luminosity scale of RR Lyrae stars with the Baade-Wesselink method. II. The absolute magnitudes of 13 field RR Lyrae stars , 1990 .

[45]  A. J. Longmore,et al.  RR Lyrae stars in globular clusters : better distances from infrared measurements ? , 1986 .