Analysis of shot noise limitations due to absorption count in EUV resists

Both fundamental measurements of resist exposure events and measurements of line-edge roughness for similar exposure latitude images for e-beam and EUV patterning tools have been used to assess the relative role of exposure shot-noise in lithographic performance. Electron energy loss spectroscopy (EELS) has been performed to quantify the probability of absorption of 100 keV electrons in two commercially available EUV resists. About 1/3 of the incident electrons lose at least 2 eV in the materials and this absorption probability is larger than that for EUV photons in the two modern EUV resists. Exposure event count densities between EUV and e-beam differ by 11-13%, which results in an expected difference in the variation in exposure shot noise of only 6%. With matched image exposure latitudes and accounting for EUV mask LER contribution the measured LER distributions indicate a high (76% and 94%) confidence that EUV resist performance is currently not dominated by exposure event counts for two leading chemically amplified EUV resists.