Quantum Synchronization on the IBM Q System

We report the first experimental demonstration of quantum synchronization. This is achieved by performing a digital simulation of a single spin-$1$ limit-cycle oscillator on the quantum computers of the IBM Q System. Applying an external signal to the oscillator, we verify typical features of quantum synchronization and demonstrate an interference-based quantum synchronization blockade. Our results show that state-of-the-art noisy intermediate-scale quantum computers are powerful enough to implement realistic dissipative quantum systems. Finally, we discuss limitations of current quantum hardware and define requirements necessary to investigate more complex problems.

[1]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[2]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[3]  E. Weig,et al.  Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes. , 2016, Physical review letters.

[4]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  T. Kippenberg,et al.  A maser based on dynamical backaction on microwave light , 2017, Physics Letters A.

[6]  Ke Huang,et al.  Injection locking of optomechanical oscillators via acoustic waves , 2017, 2017 International Conference on Optical MEMS and Nanophotonics (OMN).

[7]  John A Smolin,et al.  Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. , 2012, Physical review letters.

[8]  J. F. Poyatos,et al.  Quantum Reservoir Engineering with Laser Cooled Trapped Ions. , 1996, Physical review letters.

[9]  W. Marsden I and J , 2012 .

[10]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[11]  Christoph Bruder,et al.  Quantum synchronization of a driven self-sustained oscillator. , 2013, Physical review letters.

[12]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[13]  Ilya Baskin,et al.  Synchronization in an optomechanical cavity. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[15]  S. Nigg Observing quantum synchronization blockade in circuit quantum electrodynamics , 2017, 1706.04945.

[16]  K. Vahala,et al.  Observation of injection locking in an optomechanical RF oscillator , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[17]  Michael R. Hush,et al.  Spin correlations as a probe of quantum synchronization in trapped ion phonon-lasers , 2014, 1412.1863.

[18]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[19]  Matteo A. C. Rossi,et al.  IBM Q Experience as a versatile experimental testbed for simulating open quantum systems , 2019, npj Quantum Information.

[20]  C. Bruder,et al.  Synchronizing the Smallest Possible System. , 2018, Physical review letters.

[21]  B W Connors,et al.  Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. , 1989, Journal of neurophysiology.

[22]  Colin P. Williams,et al.  Optimal quantum circuits for general two-qubit gates (5 pages) , 2003, quant-ph/0308006.

[23]  Jan Wiersig,et al.  Sensors operating at exceptional points: General theory , 2016 .

[24]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[25]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[26]  H. Tang,et al.  Photonic cavity synchronization of nanomechanical oscillators. , 2013, Physical review letters.

[27]  Brian H. Houston,et al.  Frequency entrainment for micromechanical oscillator , 2003 .

[28]  W. Bowen,et al.  Injection locking of an electro-optomechanical device , 2017, 1707.01704.

[29]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[30]  A. Metelmann,et al.  Nonreciprocal Photon Transmission and Amplification via Reservoir Engineering , 2015, 1502.07274.

[31]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[32]  Michal Lipson,et al.  Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light. , 2015, Physical review letters.

[33]  A. Roulet,et al.  Optimal synchronization deep in the quantum regime: Resource and fundamental limit , 2018, Physical Review A.

[34]  Tony E. Lee,et al.  Quantum synchronization of quantum van der Pol oscillators with trapped ions. , 2013, Physical review letters.

[35]  Jan-Michael Reiner,et al.  Finding the ground state of the Hubbard model by variational methods on a quantum computer with gate errors , 2018, Quantum Science and Technology.

[36]  Quantum many-body dynamics in optomechanical arrays. , 2012, Physical review letters.

[37]  O. V. Zhirov,et al.  Quantum synchronization , 2006 .

[38]  Debbie W. Leung,et al.  Universal simulation of Markovian quantum dynamics , 2001 .

[39]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[40]  J Eisert,et al.  Dissipative quantum Church-Turing theorem. , 2011, Physical review letters.

[41]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[42]  Frank Pollmann,et al.  Simulating quantum many-body dynamics on a current digital quantum computer , 2019, npj Quantum Information.

[43]  A Goetschy,et al.  Light-Mediated Cascaded Locking of Multiple Nano-Optomechanical Oscillators. , 2016, Physical review letters.

[44]  G J Milburn,et al.  Synchronization of many nanomechanical resonators coupled via a common cavity field. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.