An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations
暂无分享,去创建一个
Zhen F. Tian | P. X. Yu | Z. Tian | P. Yu
[1] Jean-Pierre Croisille,et al. Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier-Stokes System , 2006, SIAM J. Numer. Anal..
[2] Alexandre J. Chorin,et al. On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .
[3] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[4] Murli M. Gupta,et al. A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation , 2005 .
[5] Jean-Pierre Croisille,et al. A Compact Difference Scheme for the Biharmonic Equation in Planar Irregular Domains , 2009, SIAM J. Numer. Anal..
[6] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[7] Stuart E. Rogers,et al. Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .
[8] M. Sahin,et al. A novel fully implicit finite volume method applied to the lid‐driven cavity problem—Part I: High Reynolds number flow calculations , 2003 .
[9] N. Moraga,et al. A stream function implicit finite difference scheme for 2D incompressible flows of Newtonian fluids , 2002 .
[10] J. C. Kalita,et al. A transformation‐free HOC scheme for steady convection–diffusion on non‐uniform grids , 2004 .
[11] G. Carey,et al. High‐order compact scheme for the steady stream‐function vorticity equations , 1995 .
[12] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[13] E. Barragy,et al. STREAM FUNCTION-VORTICITY DRIVEN CAVITY SOLUTION USING p FINITE ELEMENTS , 1997 .
[14] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[15] Jean-Pierre Croisille,et al. A Compact Scheme for the Streamfunction Formulation of Navier-Stokes Equations , 2003, ICCSA.
[16] Jun Zhang,et al. Numerical simulation of 2D square driven cavity using fourth-order compact finite difference schemes , 2003 .
[17] Shiyi Chen,et al. Simulation of Cavity Flow by the Lattice Boltzmann Method , 1994, comp-gas/9401003.
[18] S. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .
[19] J. Pereira,et al. A Conservative Finite-Volume Second-Order-Accurate Projection Method on Hybrid Unstructured Grids , 1999 .
[20] E Weinan,et al. Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .
[21] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[22] Tao Tang,et al. A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows , 2001, J. Sci. Comput..
[23] Jian‐Guo Liu,et al. Projection method I: convergence and numerical boundary layers , 1995 .
[24] Toshio Kobayashi,et al. Numerical solution of the incompressible Navier-Stokes equations with an upwind compact difference scheme , 1999 .
[25] Murli M. Gupta,et al. A single cell high order scheme for the convection‐diffusion equation with variable coefficients , 1984 .
[26] B. Fornberg,et al. A compact fourth‐order finite difference scheme for the steady incompressible Navier‐Stokes equations , 1995 .
[27] Charles-Henri Bruneau,et al. An efficient scheme for solving steady incompressible Navier-Stokes equations , 1990 .
[28] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[29] A. J. Baker,et al. An efficient high-order Taylor weak statement formulation for the Navier-Strokes equation , 2001 .
[30] Robert J. MacKinnon,et al. Differential‐equation‐based representation of truncation errors for accurate numerical simulation , 1991 .
[31] Raz Kupferman,et al. A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..
[32] Z. F. Tian,et al. High-order compact exponential finite difference methods for convection-diffusion type problems , 2007, J. Comput. Phys..
[33] Dalia Fishelov,et al. Vorticity dynamics and numerical Resolution of Navier-Stokes Equations , 2001 .
[34] E Weinan,et al. Projection Method II: Godunov--Ryabenki Analysis , 1996 .
[35] Ayodeji O. Demuren,et al. Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows , 1998 .
[36] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[37] M. Kobayashi,et al. A computational stream function method for two‐dimensional incompressible viscous flows , 2005 .
[38] Nobuyuki Satofuka,et al. Higher‐order solutions of square driven cavity flow using a variable‐order multi‐grid method , 1992 .
[39] Murli M. Gupta. High accuracy solutions of incompressible Navier-Stokes equations , 1991 .
[40] Swapan K. Pandit,et al. On the Use of Compact Streamfunction-Velocity Formulation of Steady Navier-Stokes Equations on Geometries beyond Rectangular , 2008, J. Sci. Comput..
[41] D. Spalding,et al. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .
[42] Yongbin Ge,et al. A fourth‐order compact finite difference scheme for the steady stream function–vorticity formulation of the Navier–Stokes/Boussinesq equations , 2003 .
[43] M. Ben-Artzi,et al. A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .
[44] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[45] Jian‐Guo Liu,et al. Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .