An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations

Recently, a new paradigm for solving the steady Navier-Stokes equations using a streamfunction-velocity formulation was proposed by Gupta and Kalita [M.M. Gupta, J.C. Kalita, A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation, J. Comput. Phys. 207 (2005) 52-68], which avoids difficulties inherent in the conventional streamfunction-vorticity and primitive variable formulations. It is discovered that this formulation can reached second-order accurate and obtained accuracy solutions with little additional cost for a couple of fluid flow problems. In this paper, an efficient compact finite difference approximation, named as five point constant coefficient second-order compact (5PCC-SOC) scheme, is proposed for the streamfunction formulation of the steady incompressible Navier-Stokes equations, in which the grid values of the streamfunction and the values of its first derivatives (velocities) are carried as the unknown variables. The derivation approach is simple and can be easily used to derive compact difference schemes for other similar high order elliptic differential equations. Numerical examples, including the lid driven cavity flow problem and a problem of flow in a rectangular cavity with the hight-width ratio of 2, are solved numerically to demonstrate the accuracy and efficiency of the newly proposed scheme. The results obtained are compared with ones by different available numerical methods in the literature. The present scheme not only shows second-order accurate, but also proves more effective than the existing second-order compact scheme of the streamfunction formulation in the aspect of computational cost.

[1]  Jean-Pierre Croisille,et al.  Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier-Stokes System , 2006, SIAM J. Numer. Anal..

[2]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[3]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[4]  Murli M. Gupta,et al.  A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation , 2005 .

[5]  Jean-Pierre Croisille,et al.  A Compact Difference Scheme for the Biharmonic Equation in Planar Irregular Domains , 2009, SIAM J. Numer. Anal..

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[8]  M. Sahin,et al.  A novel fully implicit finite volume method applied to the lid‐driven cavity problem—Part I: High Reynolds number flow calculations , 2003 .

[9]  N. Moraga,et al.  A stream function implicit finite difference scheme for 2D incompressible flows of Newtonian fluids , 2002 .

[10]  J. C. Kalita,et al.  A transformation‐free HOC scheme for steady convection–diffusion on non‐uniform grids , 2004 .

[11]  G. Carey,et al.  High‐order compact scheme for the steady stream‐function vorticity equations , 1995 .

[12]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[13]  E. Barragy,et al.  STREAM FUNCTION-VORTICITY DRIVEN CAVITY SOLUTION USING p FINITE ELEMENTS , 1997 .

[14]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[15]  Jean-Pierre Croisille,et al.  A Compact Scheme for the Streamfunction Formulation of Navier-Stokes Equations , 2003, ICCSA.

[16]  Jun Zhang,et al.  Numerical simulation of 2D square driven cavity using fourth-order compact finite difference schemes , 2003 .

[17]  Shiyi Chen,et al.  Simulation of Cavity Flow by the Lattice Boltzmann Method , 1994, comp-gas/9401003.

[18]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[19]  J. Pereira,et al.  A Conservative Finite-Volume Second-Order-Accurate Projection Method on Hybrid Unstructured Grids , 1999 .

[20]  E Weinan,et al.  Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .

[21]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[22]  Tao Tang,et al.  A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows , 2001, J. Sci. Comput..

[23]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[24]  Toshio Kobayashi,et al.  Numerical solution of the incompressible Navier-Stokes equations with an upwind compact difference scheme , 1999 .

[25]  Murli M. Gupta,et al.  A single cell high order scheme for the convection‐diffusion equation with variable coefficients , 1984 .

[26]  B. Fornberg,et al.  A compact fourth‐order finite difference scheme for the steady incompressible Navier‐Stokes equations , 1995 .

[27]  Charles-Henri Bruneau,et al.  An efficient scheme for solving steady incompressible Navier-Stokes equations , 1990 .

[28]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[29]  A. J. Baker,et al.  An efficient high-order Taylor weak statement formulation for the Navier-Strokes equation , 2001 .

[30]  Robert J. MacKinnon,et al.  Differential‐equation‐based representation of truncation errors for accurate numerical simulation , 1991 .

[31]  Raz Kupferman,et al.  A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..

[32]  Z. F. Tian,et al.  High-order compact exponential finite difference methods for convection-diffusion type problems , 2007, J. Comput. Phys..

[33]  Dalia Fishelov,et al.  Vorticity dynamics and numerical Resolution of Navier-Stokes Equations , 2001 .

[34]  E Weinan,et al.  Projection Method II: Godunov--Ryabenki Analysis , 1996 .

[35]  Ayodeji O. Demuren,et al.  Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows , 1998 .

[36]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[37]  M. Kobayashi,et al.  A computational stream function method for two‐dimensional incompressible viscous flows , 2005 .

[38]  Nobuyuki Satofuka,et al.  Higher‐order solutions of square driven cavity flow using a variable‐order multi‐grid method , 1992 .

[39]  Murli M. Gupta High accuracy solutions of incompressible Navier-Stokes equations , 1991 .

[40]  Swapan K. Pandit,et al.  On the Use of Compact Streamfunction-Velocity Formulation of Steady Navier-Stokes Equations on Geometries beyond Rectangular , 2008, J. Sci. Comput..

[41]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[42]  Yongbin Ge,et al.  A fourth‐order compact finite difference scheme for the steady stream function–vorticity formulation of the Navier–Stokes/Boussinesq equations , 2003 .

[43]  M. Ben-Artzi,et al.  A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .

[44]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[45]  Jian‐Guo Liu,et al.  Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .