Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide.

We demonstrate a chip-scale f-2f interferometer for carrier-envelope-offset frequency (fCEO) detection. This is enabled by simultaneously producing octave-spanning coherent supercontinuum generation and second-harmonic generation in a single dispersion-engineered silicon nitride waveguide. We measure the fCEO beatnote of an 80 MHz modelocked pump source with a signal-to-noise ratio of 25 dB. Our simple approach for f-2f interferometry enables a straightforward route towards a chip-scale self-referenced frequency comb source that can operate at low pulse energies.

[1]  Roberto Morandotti,et al.  Supercontinuum generation in a high index doped silica glass spiral waveguide. , 2010, Optics express.

[2]  M. D. Moores,et al.  Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber. , 2001, Optics letters.

[3]  R. Baets,et al.  Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. , 2011, Optics express.

[4]  K. Cossel,et al.  Ultrabroadband coherent supercontinuum frequency comb , 2011, 1105.2093.

[5]  A. Stentz,et al.  Optical properties of high-delta air silica microstructure optical fibers. , 2000, Optics letters.

[6]  A. Leinse,et al.  On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. , 2015, Optics express.

[7]  G. Roelkens,et al.  Generation of coherent supercontinuum in a-Si:H waveguides: experiment and modeling based on measured dispersion profile. , 2014, Optics express.

[8]  F. Wise,et al.  Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. , 2015, Optics letters.

[9]  Carsten Langrock,et al.  Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides. , 2007, Optics letters.

[10]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[11]  Michal Lipson,et al.  Breaking the Loss Limitation of On-chip High-confinement Resonators , 2016, 1609.08699.

[12]  Michal Lipson,et al.  Overcoming SiN film stress limitations for high quality factor ring resonators , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[13]  Xiaoxiao Xue,et al.  Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation , 2016, Light: Science & Applications.

[14]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[15]  Michal Lipson,et al.  On-chip Frequency Comb Generation at Visible Wavelengths via Simultaneous Second-and Third-order Optical Nonlinearities References and Links , 2022 .

[16]  William S. Rabinovich,et al.  On the origin of the second-order nonlinearity in strained Si–SiN structures , 2015, 1509.01166.

[17]  M. Lipson,et al.  Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. , 2015, Optics express.

[18]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[19]  M. Lipson,et al.  Coherent Directional Supercontinuum Generation , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[20]  Rick Trebino,et al.  Experimental studies of the coherence of microstructure-fiber supercontinuum. , 2003, Optics express.

[21]  Alexander L Gaeta,et al.  Nonlinear propagation and continuum generation in microstructured optical fibers. , 2002, Optics letters.

[22]  Marcel Hoekman,et al.  Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. , 2017, Optics express.

[23]  Camille-Sophie Brès,et al.  Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides , 2018 .

[24]  Michal Lipson,et al.  Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. , 2016, Optics express.

[25]  Ming Xin,et al.  Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm , 2017, Light: Science & Applications.

[26]  M. Lipson,et al.  Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. , 2014, Optics letters.

[27]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[28]  Binbin Zhou,et al.  Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[29]  Michal Lipson,et al.  Harmonic generation in silicon nitride ring resonators. , 2010, Optics express.

[30]  Ming Yan,et al.  An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide , 2014, Nature Communications.

[31]  Camille-Sophie Brès,et al.  Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching , 2017, Nature Communications.

[32]  Kyunghun Han,et al.  High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation , 2016 .

[33]  Ian Coddington,et al.  Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. , 2017, Optics letters.

[34]  Arnan Mitchell,et al.  Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides , 2018 .

[35]  K. Vahala,et al.  Coherent ultra-violet to near-infrared generation in silica ridge waveguides , 2017, Nature Communications.

[36]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[37]  K. Srinivasan,et al.  Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities , 2017, 1704.03908.

[38]  M. Lipson,et al.  Ultrabroadband supercontinuum generation in a CMOS-compatible platform. , 2012, Optics letters.