Analyticity of Solutions for a Generalized Euler Equation
暂无分享,去创建一个
[1] C. de,et al. Quatre leçons sur les fonctions quasi-analytiques de variable réelle , 2022 .
[2] G. Métivier,et al. Propagation de l'analyticité locale pour les solutions de l'équation d'Euler , 1986 .
[3] L. S. Bosanquet,et al. Series de Fourier et classes quasi-analytiques de Fonctions , 1936 .
[4] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[5] Edriss S. Titi,et al. Regularity of solutions and the convergence of the galerkin method in the ginzburg-landau equation , 1993 .
[6] Keith Promislow,et al. Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations , 1991 .
[7] Maurice Gevrey,et al. Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .
[8] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[9] C. Kahane. On the spatial analyticity of solutions of the navier-stokes equations , 1969 .
[10] Darryl D. Holm,et al. Long-time shallow-water equations with a varying bottom , 1997, Journal of Fluid Mechanics.
[11] M. Oliver. Justification of the Shallow-Water Limit for a Rigid-Lid Flow with Bottom Topography , 1997 .
[13] Edriss S. Titi,et al. Global well-posedness for the lake equations , 1996 .
[14] C. D. Levermore,et al. Global well-posedness for models of shallow water in a basin with a varying bottom , 1996 .
[15] Darryl D. Holm,et al. Long-time effects of bottom topography in shallow water , 1996 .
[16] R. Temam,et al. Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .
[17] F. John. Partial differential equations , 1967 .
[18] C. Bardos,et al. Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de $R^n$ , 1977 .
[19] Edriss S. Titi,et al. Analyticity of essentially bounded solutions to semilinear parabolic systems and validity of the Ginzburg-Landau equation , 1996 .