Analyticity of Solutions for a Generalized Euler Equation

Abstract We consider the so-called lake and great lake equations, which are shallow water equations that describe the long-time motion of an inviscid, incompressible fluid contained in a shallow basin with a slowly spatially varying bottom, a free upper surface, and vertical side walls, under the influence of gravity and in the limit of small characteristic velocities and very small surface amplitude. If these equations are posed on a space-periodic domain and the initial data are real analytic, the solution remains real analytic for all times. The proof is based on a characterization of Gevrey classes in terms of decay of Fourier coefficients. In particular, our result recovers known results for the Euler equations in two and three spatial dimensions. We believe the proof is new.

[1]  C. de,et al.  Quatre leçons sur les fonctions quasi-analytiques de variable réelle , 2022 .

[2]  G. Métivier,et al.  Propagation de l'analyticité locale pour les solutions de l'équation d'Euler , 1986 .

[3]  L. S. Bosanquet,et al.  Series de Fourier et classes quasi-analytiques de Fonctions , 1936 .

[4]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[5]  Edriss S. Titi,et al.  Regularity of solutions and the convergence of the galerkin method in the ginzburg-landau equation , 1993 .

[6]  Keith Promislow,et al.  Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations , 1991 .

[7]  Maurice Gevrey,et al.  Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  C. Kahane On the spatial analyticity of solutions of the navier-stokes equations , 1969 .

[10]  Darryl D. Holm,et al.  Long-time shallow-water equations with a varying bottom , 1997, Journal of Fluid Mechanics.

[11]  M. Oliver Justification of the Shallow-Water Limit for a Rigid-Lid Flow with Bottom Topography , 1997 .

[12]  SOLVABILITY OF INITIAL-BOUNDARY VALUE PROBLEMS FOR EULER'S EQUATIONS FOR FLOWS OF AN IDEAL INCOMPRESSIBLE NONHOMOGENEOUS FLUID AND AN IDEAL BAROTROPIC FLUID BOUNDED BY FREE SURFACES , 1995 .

[13]  Edriss S. Titi,et al.  Global well-posedness for the lake equations , 1996 .

[14]  C. D. Levermore,et al.  Global well-posedness for models of shallow water in a basin with a varying bottom , 1996 .

[15]  Darryl D. Holm,et al.  Long-time effects of bottom topography in shallow water , 1996 .

[16]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[17]  F. John Partial differential equations , 1967 .

[18]  C. Bardos,et al.  Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de $R^n$ , 1977 .

[19]  Edriss S. Titi,et al.  Analyticity of essentially bounded solutions to semilinear parabolic systems and validity of the Ginzburg-Landau equation , 1996 .