Shifted powers in Lucas–Lehmer sequences
暂无分享,去创建一个
[1] M. Mignotte,et al. Shifted powers in binary recurrence sequences , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] S. Siksek,et al. Elliptic curves over real quadratic fields are modular , 2013, 1310.7088.
[3] S. Siksek,et al. Criteria for irreducibility of mod p representations of Frey curves , 2013, 1309.4748.
[4] S. Siksek,et al. The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields , 2013, Compositio Mathematica.
[5] H. R. Gallegos-Ruiz. S-INTEGRAL POINTS ON HYPERELLIPTIC CURVES , 2011 .
[6] J. Voight,et al. Explicit Methods for Hilbert Modular Forms , 2010, 1010.5727.
[7] F. Apéry. Sur l’équation , 2010 .
[8] Maurice Mignotte,et al. Fibonacci numbers at most one away from a perfect power , 2008 .
[9] M. Mignotte,et al. Integral points on hyperelliptic curves , 2008, 0801.4459.
[10] Maurice Mignotte,et al. Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.
[11] M. Mignotte,et al. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers , 2004, math/0403046.
[12] N. Smart. The Algorithmic Resolution of Diophantine Equations , 1999 .
[13] E. Matveev,et al. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .
[14] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[15] N. Smart,et al. Integral points on elliptic curves over number fields , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] J. Oesterlé,et al. Sur une question de B. Mazur , 1992 .
[17] T. N. Shorey,et al. On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. , 1983 .
[18] A. Pethö. Perfect powers in second order linear recurrences , 1982 .
[19] M. Mignotte,et al. Almost powers in the Lucas sequence , 2008 .
[20] E M Matveev. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .
[21] F. Momose. Isogenies of prime degree over number fields , 1995 .
[22] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves , 1994 .
[23] Michel Laurent,et al. Linear forms in two logarithms and interpolation determinants II , 1994 .