Shifted powers in Lucas–Lehmer sequences

[1]  M. Mignotte,et al.  Shifted powers in binary recurrence sequences , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  S. Siksek,et al.  Elliptic curves over real quadratic fields are modular , 2013, 1310.7088.

[3]  S. Siksek,et al.  Criteria for irreducibility of mod p representations of Frey curves , 2013, 1309.4748.

[4]  S. Siksek,et al.  The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields , 2013, Compositio Mathematica.

[5]  H. R. Gallegos-Ruiz S-INTEGRAL POINTS ON HYPERELLIPTIC CURVES , 2011 .

[6]  J. Voight,et al.  Explicit Methods for Hilbert Modular Forms , 2010, 1010.5727.

[7]  F. Apéry Sur l’équation , 2010 .

[8]  Maurice Mignotte,et al.  Fibonacci numbers at most one away from a perfect power , 2008 .

[9]  M. Mignotte,et al.  Integral points on hyperelliptic curves , 2008, 0801.4459.

[10]  Maurice Mignotte,et al.  Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.

[11]  M. Mignotte,et al.  Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers , 2004, math/0403046.

[12]  N. Smart The Algorithmic Resolution of Diophantine Equations , 1999 .

[13]  E. Matveev,et al.  An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .

[14]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[15]  N. Smart,et al.  Integral points on elliptic curves over number fields , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  J. Oesterlé,et al.  Sur une question de B. Mazur , 1992 .

[17]  T. N. Shorey,et al.  On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. , 1983 .

[18]  A. Pethö Perfect powers in second order linear recurrences , 1982 .

[19]  M. Mignotte,et al.  Almost powers in the Lucas sequence , 2008 .

[20]  E M Matveev An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .

[21]  F. Momose Isogenies of prime degree over number fields , 1995 .

[22]  J. Silverman Advanced Topics in the Arithmetic of Elliptic Curves , 1994 .

[23]  Michel Laurent,et al.  Linear forms in two logarithms and interpolation determinants II , 1994 .