Introduction to Economic Modeling

This chapter introduces economic modeling based on artificial intelligence techniques. It introduces issues such as economic data modeling and knowledge discovery, including data mining and causality versus correlation. It also outlines some of the common errors in economic modeling with regard to data handling, modeling, and data interpretation. It surveys the relevant econometric methods and motivates for the use of artificial intelligence methods.

[1]  Yee Ming Chen,et al.  A study on modeling of human spatial behavior using multi-agent technique , 2012, Expert Syst. Appl..

[2]  Tshilidzi Marwala,et al.  A study in a hybrid centralised-swarm agent community , 2005, IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005..

[3]  Tshilidzi Marwala,et al.  Part-Machine Clustering: The Comparison between Adaptive Resonance Theory Neural Network and Ant Colony System , 2010 .

[4]  Nubia Velasco,et al.  A non-dominated sorting genetic algorithm for a bi-objective pick-up and delivery problem , 2012 .

[5]  Bruce J. Caldwell Beyond Positivism: Economic Methodology in the Twentieth Century , 1982 .

[6]  N. Gradojevic Frequency domain analysis of foreign exchange order flows , 2012 .

[7]  Tshilidzi Marwala,et al.  Finite-element-model Updating Using Computional Intelligence Techniques , 2010 .

[8]  R. Mestre,et al.  Evaluating macro-economic models in the frequency domain: A note , 2008 .

[9]  A. Tiwari An empirical investigation of causality between producers' price and consumers' price indices in Australia in frequency domain , 2012 .

[10]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[11]  Robert Sabourin,et al.  A survey of techniques for incremental learning of HMM parameters , 2012, Inf. Sci..

[12]  T. Marwala,et al.  American option pricing using Bayesian multi-layer perceptrons and Bayesian support vector machines , 2005, IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005..

[13]  Tshilidzi Marwala,et al.  Neuro-rough models for modelling HIV , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[14]  Elbert Marais,et al.  Predicting Global Internet Instability Caused by Worms using Neural Networks , 2006 .

[15]  Tshilidzi Marwala,et al.  Dynamic Software Maintenance Effort Estimation Modeling Using Neural Network, Rule Engine and Multi-regression Approach , 2012, ICCSA.

[16]  O. Lange The Scope and Method of Economics , 1945 .

[17]  T. Marwala,et al.  Controlling Interstate Conflict using Neuro-fuzzy Modeling and Genetic Algorithms , 2006, 2006 International Conference on Intelligent Engineering Systems.

[18]  Tshilidzi Marwala,et al.  Condition Monitoring Using Computational Intelligence Methods , 2012 .

[19]  Robert Sabourin,et al.  LoGID: An adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs , 2012, Pattern Recognit..

[20]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[21]  Hong Yan,et al.  Distributive properties of main overlap and noise terms in Autoassociative Memory Networks , 1995, Neural Networks.

[22]  Yi Zhang,et al.  Optimal Parameters for Multi-pump Control System of Water Supply Based on Blind Source Separation , 2012 .

[23]  Yi-Qing Ni,et al.  Structural damage alarming using auto-associative neural network technique : exploration of environment-tolerant capacity and setup of alarming threshold , 2011 .

[24]  Tshilidzi Marwala,et al.  Artificial intelligence for conflict management , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[25]  T. Marwala,et al.  Using Optimisation Techniques to Granulise Rough Set Partitions , 2007 .

[26]  Tshilidzi Marwala,et al.  Simulation of a trading multi-agent system , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[27]  Claudio Moraga,et al.  Training regression ensembles by sequential target correction and resampling , 2012, Inf. Sci..

[28]  Tshilidzi Marwala,et al.  Finite Element Model Updating Using Wavelet Data and Genetic Algorithm , 2002 .

[29]  Tshilidzi Marwala,et al.  Fault Classification in Cylinders Using Multilayer Perceptrons, Support Vector Machines and Guassian Mixture Models , 2007, ArXiv.

[30]  John J. Burken,et al.  Neural Network Applications in Advanced Aircraft Flight Control System, a Hybrid System, a Flight Test Demonstration , 2006, ICONIP.

[31]  Tshilidzi Marwala,et al.  Modeling and controlling interstate conflict , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[32]  Tshilidzi Marwala,et al.  Neuro-fuzzy Modeling and Fuzzy Rule Extraction Applied to Conflict Management , 2006, ICONIP.

[33]  Disequilibrium econometrics and non-linear budget constraints , 1980 .

[34]  Zhijie Xiao,et al.  Do shocks last forever? Local persistency in economic time series , 2007 .

[35]  Monica Lam,et al.  Neural network techniques for financial performance prediction: integrating fundamental and technical analysis , 2004, Decis. Support Syst..

[36]  B. L. Betechuoh,et al.  Autoencoder networks for HIV classification , 2006 .

[37]  J. S. Silva,et al.  On the use of robust regression in econometrics , 2012 .

[38]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[39]  Katja Fennel,et al.  Data assimilation with a local Ensemble Kalman Filter applied to a three-dimensional biological model of the Middle Atlantic Bight , 2012 .

[40]  Guoqiang Hu,et al.  Robust consensus tracking of a class of second-order multi-agent dynamic systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[41]  John L. Kling,et al.  A comparison of multivariate forecasting procedures for economic time series , 1985 .

[42]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[43]  Tshilidzi Marwala,et al.  Common Mistakes when Applying Computational Intelligence and Machine Learning to Stock Market modelling , 2012, ArXiv.

[44]  M. Woo-cumings,et al.  The developmental state , 1999 .

[45]  G. Swann,et al.  Putting Econometrics in its Place: A New Direction in Applied Economics , 2006 .

[46]  Zehong Yang,et al.  Intelligent stock trading system by turning point confirming and probabilistic reasoning , 2008, Expert Syst. Appl..

[47]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[48]  Martín Abadi,et al.  A Theory of Objects , 1996, Monographs in Computer Science.

[49]  Milton S. Boyd,et al.  Designing a neural network for forecasting financial and economic time series , 1996, Neurocomputing.

[50]  Guang-Yao Zhu,et al.  Moving Track Control System of Agriculture Oriented Mobile Robot , 2012 .

[51]  Marco Gallegati,et al.  Wavelet analysis of stock returns and aggregate economic activity , 2008, Comput. Stat. Data Anal..

[52]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[53]  L. Lamy The econometrics of auctions with asymmetric anonymous bidders , 2012 .

[54]  Mark A. Kramer,et al.  Autoassociative neural networks , 1992 .

[55]  François Benhmad Modeling nonlinear Granger causality between the oil price and U.S. dollar: A wavelet based approach , 2012 .

[56]  Randall G. Holcombe,et al.  Economic models and methodology , 1989 .

[57]  Tshilidzi Marwala,et al.  A dynamic programming approach to missing data estimation using neural networks , 2013, Inf. Sci..

[58]  M. Thompson Late industrialisers, late democratisers: Developmental states in the Asia-Pacific , 1996 .

[59]  Shihua Chen,et al.  Impulsive consensus problem of second-order multi-agent systems with switching topologies , 2012 .

[60]  T. Marwala,et al.  Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm , 2006 .

[61]  Kyoung-jae Kim,et al.  Financial time series forecasting using support vector machines , 2003, Neurocomputing.

[62]  Amparo Alonso-Betanzos,et al.  Nonlinear single layer neural network training algorithm for incremental, nonstationary and distributed learning scenarios , 2012, Pattern Recognit..

[63]  Saul Krasner,et al.  The Ubiquity of chaos , 1990 .

[64]  Haifeng Li,et al.  Grammar-Based Semi-Supervised Incremental Learning in Automatic Speech Recognition and Labeling , 2012 .

[65]  Martin Heckmann,et al.  Incremental word learning: Efficient HMM initialization and large margin discriminative adaptation , 2012, Speech Commun..

[66]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[67]  M. Blaug,et al.  Appraising Economic Theories: Studies in the Methodology of Research Programs , 1991 .

[68]  Tshilidzi Marwala,et al.  Multi-Agent Modeling Using Intelligent Agents in the Game of Lerpa , 2007, ArXiv.

[69]  F. Fallahi,et al.  Causal relationship between energy consumption (EC) and GDP: A Markov-switching (MS) causality , 2011 .

[70]  M. Kar,et al.  Financial development and economic growth nexus in the MENA countries: Bootstrap panel granger causality analysis , 2011 .

[71]  Comparing British and American Economic and Industrial Performance 1860-1993: A Time Series Perspective , 1998 .

[72]  Tshilidzi Marwala,et al.  Artificial Neural Networks and Support Vector Machines for water demand time series forecasting , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[73]  M. Marseguerra,et al.  The autoassociative neural network in signal analysis: III. Enhancing the reliability of a NN with application to a BWR , 2006 .

[74]  Tshilidzi Marwala,et al.  Online Forecasting of Stock Market Movement Direction Using the Improved Incremental Algorithm , 2006, ICONIP.

[75]  Matt Weisfeld,et al.  The Object-Oriented Thought Process , 2000 .

[76]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[77]  J. Fourier Théorie analytique de la chaleur , 2009 .

[78]  M. Bittencourt,et al.  Inflation and economic growth in Latin America: Some panel time-series evidence , 2012 .

[79]  Alok Aggarwal,et al.  Composing Signatures for Misuse Intrusion Detection System Using Genetic Algorithm in an Offline Environment , 2012, ACITY.

[80]  Yuan Yuan,et al.  Incremental threshold learning for classifier selection , 2012, Neurocomputing.

[81]  W. Baumol,et al.  Economics--principles and policy , 1979 .

[82]  T. Marwala,et al.  A rough set theory based predictive model for stock prices , 2011, 2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI).

[83]  Luis E. Zárate,et al.  The use of artificial neural networks in the analysis and prediction of stock prices , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[84]  Hau-San Wong,et al.  Generalized Adjusted Rand Indices for cluster ensembles , 2012, Pattern Recognit..

[85]  Axel Großmann,et al.  Exchange Rate Misalignments in Frequency Domain , 2012 .

[86]  T. Marwala,et al.  Conflict Modelling and Knowledge Extraction using Computational Intelligence Methods , 2007, 2007 11th International Conference on Intelligent Engineering Systems.

[87]  Alex Preda Framing Finance: The Boundaries of Markets and Modern Capitalism , 2009 .

[88]  Motohiro Yogo,et al.  Measuring Business Cycles: A Wavelet Analysis of Economic Time Series , 2008 .

[89]  H. Simon,et al.  Cause and Counterfactual , 1966 .

[90]  Tatyana S Turova,et al.  The emergence of connectivity in neuronal networks: From bootstrap percolation to auto-associative memory , 2012, Brain Research.

[91]  Stephen R. Schach,et al.  Object-oriented and classical software engineering , 1995 .

[92]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[93]  Zubair A. Baig Multi-agent systems for protecting critical infrastructures: A survey , 2012, J. Netw. Comput. Appl..

[94]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[95]  Tshilidzi Marwala,et al.  Genetic Algorithms, Neural Networks, Fuzzy Inference System, Support Vector Machines for Call Performance Classification , 2009, 2009 International Conference on Machine Learning and Applications.

[96]  Tshilidzi Marwala,et al.  An intelligent Multi-Agent recommender system for human capacity building , 2008, MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.

[97]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[98]  Thomas Wagner,et al.  An Agent-Oriented Approach to Industrial Automation Systems , 2002, Agent Technologies, Infrastructures, Tools, and Applications for E-Services.

[99]  Tshilidzi Marwala,et al.  Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics , 2010 .

[100]  David R. Larson Unitary Systems and Wavelet Sets , 2006 .

[101]  Tshilidzi Marwala,et al.  Optimised rough sets for modelling interstate conflict , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[102]  Tshilidzi Marwala,et al.  Computational Intelligence for Missing Data Imputation, Estimation, and Management - Knowledge Optimization Techniques , 2009, Computational Intelligence for Missing Data Imputation, Estimation, and Management.

[103]  Tshilidzi Marwala,et al.  Militarized Conflict Modeling Using Computational Intelligence , 2011, Advanced Information and Knowledge Processing.

[104]  Tshilidzi Marwala,et al.  An Integrated Human-Computer System for Controlling Interstate Disputes , 2007 .

[105]  A. Spanos Philosophy of Econometrics , 2021, The Routledge Handbook of Philosophy of Economics.

[106]  Tshilidzi Marwala,et al.  Application of GA-Fuzzy Controller design to Automatic Generation Control , 2010, Third International Workshop on Advanced Computational Intelligence.

[107]  Kai Li,et al.  Study of Selective Ensemble Learning Methods Based on Support Vector Machine , 2012 .