Identification of N\'eel vector orientation in antiferromagnetic domains switched by currents in NiO/Pt thin films

Understanding the electrical manipulation of antiferromagnetic order is a crucial aspect to enable the design of antiferromagnetic devices working at THz frequency. Focusing on collinear insulating antiferromagnetic NiO/Pt thin films as a materials platform, we identify the crystallographic orientation of the domains that can be switched by currents and quantify the Néel vector direction changes. We demonstrate electrical switching between different Tdomains by current pulses, finding that the Néel vector orientation in these domains is along [±1 ±1 3.8], different compared to the bulk <112̅> directions. The final state of the Néel vector n switching after current pulses j along the [1 ± 1 0] directions is n ∥ j. By comparing the observed Néel vector orientation and the strain in the thin films, assuming that this variation arises solely from magnetoelastic effects, we quantify the order of magnitude of the magnetoelastic coupling coefficient as b0 + 2b1 = 3 × 10 7 J m ⁄ . This information is key for the understanding of current-induced switching in antiferromagnets and for the design and use of such devices as active elements in spintronic devices.

[1]  J. Sinova,et al.  Direct Imaging of Current-Induced Antiferromagnetic Switching Revealing a Pure Thermomagnetoelastic Switching Mechanism in NiO. , 2020, Nano letters.

[2]  P. Popov,et al.  Voltage-Controlled Anisotropy and Current-Induced Magnetization Dynamics in Antiferromagnetic-Piezoelectric Layered Heterostructures , 2020 .

[3]  M. Kläui,et al.  Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films , 2020, 2004.13374.

[4]  J. Sinova,et al.  Efficient Spin Torques in Antiferromagnetic CoO/Pt Quantified by Comparing Field- and Current-Induced Switching. , 2020, Physical review letters.

[5]  P. Khalili Amiri,et al.  Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars , 2020 .

[6]  S. Cheong,et al.  Seeing is believing: visualization of antiferromagnetic domains , 2020 .

[7]  J. Greer,et al.  Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers , 2020 .

[8]  Luqiao Liu,et al.  Quantitative Study on Current-Induced Effect in an Antiferromagnet Insulator/Pt Bilayer Film. , 2019, Physical review letters.

[9]  Haoran Chen,et al.  Imaging antiferromagnetic domains in nickel oxide thin films by optical birefringence effect , 2019, Physical Review B.

[10]  Jinwoo Hwang,et al.  Electrical Switching of Tristate Antiferromagnetic Néel Order in α-Fe_{2}O_{3} Epitaxial Films. , 2019, Physical review letters.

[11]  E. Saitoh,et al.  Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging. , 2018, Physical review letters.

[12]  D. Ralph,et al.  Spin Seebeck Imaging of Spin-Torque Switching in Antiferromagnetic Pt/NiO Heterostructures , 2018, Physical Review X.

[13]  F. Pan,et al.  Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. , 2018, Physical review letters.

[14]  S. Nicolis,et al.  Coupling magneto-elastic Lagrangians to spin transfer torque sources , 2017, Journal of Magnetism and Magnetic Materials.

[15]  J. Wunderlich,et al.  Current polarity-dependent manipulation of antiferromagnetic domains , 2017, Nature Nanotechnology.

[16]  M. Klaui,et al.  Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films , 2017, Physical Review B.

[17]  Takuo Ohkochi,et al.  Spin torque control of antiferromagnetic moments in NiO , 2017, Scientific Reports.

[18]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[19]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[20]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[21]  S. Dhesi,et al.  Anisotropic x-ray magnetic linear dichroism and spectromicroscopy of interfacial Co/NiO(001) , 2011 .

[22]  C. Grazioli,et al.  Magnetic linear dichroism studies of in situ grown NiO thin films , 2007 .

[23]  H. Ohldag,et al.  Magnetostrictive domain walls in antiferromagnetic NiO. , 2003, Physical review letters.

[24]  S. Valeri,et al.  Magnetic dichroism and spin structure of antiferromagnetic NiO(001) films. , 2003, Physical review letters.

[25]  M. Finazzi,et al.  Magnetic dipolar anisotropy in strained antiferromagnetic films , 2003 .

[26]  L. Tjeng,et al.  Temperature and thickness dependence of magnetic moments in NiO epitaxial films , 1998 .

[27]  M. Hutchings,et al.  Measurement of Spin-Wave Dispersion in NiO by Inelastic Neutron Scattering and Its Relation to Magnetic Properties , 1972 .

[28]  T. Takeda,et al.  Observation of Antiferromagnetic Domains in Nickel Oxide , 1964 .

[29]  W. Roth NEUTRON AND OPTICAL STUDIES OF DOMAINS IN NiO , 1960 .

[30]  G. A. Slack,et al.  Crystallography and Domain Walls in Antiferromagnetic NiO Crystals , 1960 .

[31]  G. A. Slack,et al.  Antiferromagnetic Structure and Domains in Single Crystal NiO , 1960 .

[32]  S. Czekaj Ferromagnetic and antiferromagnetic domain configurations in thin films and multilayers: towards a patterned exchange bias system , 2007 .