The Heun operator as a Hamiltonian
暂无分享,去创建一个
[1] A. Turbiner. One-Dimensional Quasi-Exactly Solvable Schr\"odinger Equations , 2016, 1603.02992.
[2] L. Vinet,et al. Tridiagonalization and the Heun equation , 2016, 1602.04840.
[3] A. Gabrielov,et al. Spherical Rectangles , 2016, 1601.04060.
[4] V. Sokolov,et al. Corrigendum: Quasi-exact-solvability of the A 2 / G 2 ?> Elliptic model: algebraic forms, sl ( 3 ) / g ( 2 ) ?> hidden algebra, polynomial eigenfunctions, (2005 J. Phys. A: Math. Theor. 48 155201) , 2015 .
[5] A. Turbiner. The BC1 quantum elliptic model: algebraic forms, hidden algebra sl(2), polynomial eigenfunctions , 2014, 1408.1610.
[6] V. Sokolov,et al. Quasi-exact-solvability of the A 2 / G 2 ?> elliptic model: algebraic forms, sl ( 3 ) / g ( 2 ) ?> hidden algebra, and polynomial eigenfunctions , 2014, 1409.7439.
[7] A. Turbiner. Particular integrability and (quasi)-exact-solvability , 2012, 1206.2907.
[8] Robert S. Maier. The 192 solutions of the Heun equation , 2004, Math. Comput..
[9] Robert S. Maier. On reducing the Heun equation to the hypergeometric equation , 2002, math/0203264.
[10] K. Takemura. Quasi-exact solvability of Inozemtsev models , 2002, math/0205274.
[11] A. Turbiner,et al. Canonical commutation relation preserving maps , 2001, math-ph/0104004.
[12] A. Turbiner,et al. ERRATA: LIE ALGEBRAIC DISCRETIZATION OF DIFFERENTIAL EQUATIONS , 1995 .
[13] A. Turbiner,et al. Lie-algebraic discretization of differential equations , 1995, funct-an/9501001.
[14] Alexander V. Turbiner,et al. Lie algebras and polynomials in one variable , 1992 .
[15] V. Inozemtsev. Lax representation with spectral parameter on a torus for integrable particle systems , 1989 .
[16] A. Turbiner. Quasi-exactly-solvable problems andsl(2) algebra , 1988 .
[17] A. Perelomov,et al. Quantum Integrable Systems Related to Lie Algebras , 1983 .
[18] Karl Heun,et al. Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten , 1888 .