The Heun operator as a Hamiltonian

It is shown that the celebrated Heun operator H e = − ( a 0 x 3 + a 1 x 2 + a 2 x ) d 2 d x 2 + ( b 0 x 2 + b 1 x + b 2 ) d d x + c 0 x is the Hamiltonian of the sl ( 2 , R ) -quantum Euler–Arnold top of spin ν in a constant magnetic field. For a 0 ≠ 0 it is canonically equivalent to BC 1 ( A 1 ) − Calogero–Moser–Sutherland quantum models; if a 0 = 0 , ten known one-dimensional quasi-exactly-solvable problems are reproduced, and if, in addition, b 0 = c 0 = 0 , then four well-known one-dimensional quantal exactly-solvable problems are reproduced. If spin ν of the top takes a (half)-integer value the Hamiltonian possesses a finite-dimensional invariant subspace and a number of polynomial eigenfunctions occur. Discrete systems on uniform and exponential lattices are introduced which are canonically equivalent to the one described by the Heun operator.

[1]  A. Turbiner One-Dimensional Quasi-Exactly Solvable Schr\"odinger Equations , 2016, 1603.02992.

[2]  L. Vinet,et al.  Tridiagonalization and the Heun equation , 2016, 1602.04840.

[3]  A. Gabrielov,et al.  Spherical Rectangles , 2016, 1601.04060.

[4]  V. Sokolov,et al.  Corrigendum: Quasi-exact-solvability of the A 2 / G 2 ?> Elliptic model: algebraic forms, sl ( 3 ) / g ( 2 ) ?> hidden algebra, polynomial eigenfunctions, (2005 J. Phys. A: Math. Theor. 48 155201) , 2015 .

[5]  A. Turbiner The BC1 quantum elliptic model: algebraic forms, hidden algebra sl(2), polynomial eigenfunctions , 2014, 1408.1610.

[6]  V. Sokolov,et al.  Quasi-exact-solvability of the A 2 / G 2 ?> elliptic model: algebraic forms, sl ( 3 ) / g ( 2 ) ?> hidden algebra, and polynomial eigenfunctions , 2014, 1409.7439.

[7]  A. Turbiner Particular integrability and (quasi)-exact-solvability , 2012, 1206.2907.

[8]  Robert S. Maier The 192 solutions of the Heun equation , 2004, Math. Comput..

[9]  Robert S. Maier On reducing the Heun equation to the hypergeometric equation , 2002, math/0203264.

[10]  K. Takemura Quasi-exact solvability of Inozemtsev models , 2002, math/0205274.

[11]  A. Turbiner,et al.  Canonical commutation relation preserving maps , 2001, math-ph/0104004.

[12]  A. Turbiner,et al.  ERRATA: LIE ALGEBRAIC DISCRETIZATION OF DIFFERENTIAL EQUATIONS , 1995 .

[13]  A. Turbiner,et al.  Lie-algebraic discretization of differential equations , 1995, funct-an/9501001.

[14]  Alexander V. Turbiner,et al.  Lie algebras and polynomials in one variable , 1992 .

[15]  V. Inozemtsev Lax representation with spectral parameter on a torus for integrable particle systems , 1989 .

[16]  A. Turbiner Quasi-exactly-solvable problems andsl(2) algebra , 1988 .

[17]  A. Perelomov,et al.  Quantum Integrable Systems Related to Lie Algebras , 1983 .

[18]  Karl Heun,et al.  Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten , 1888 .