Garnet EoS: a critical review and synthesis

[1]  R. Angel,et al.  The contribution of elastic geothermobarometry to the debate on HP versus UHP metamorphism , 2021, Journal of metamorphic geology.

[2]  R. Angel,et al.  Thermoelastic properties of zircon: Implications for geothermobarometry , 2021, American Mineralogist.

[3]  R. Angel,et al.  Elastic geobarometry: How to work with residual inclusion strains and pressures , 2021 .

[4]  M. Scambelluri,et al.  Extensive fluid–rock interaction and pressure solution in a UHP fluid pathway recorded by garnetite, Lago di Cignana, Western Alps , 2021, Journal of Metamorphic Geology.

[5]  R. Angel,et al.  EntraPT: an online application for elastic geothermobarometry , 2020 .

[6]  R. Angel,et al.  Commentary on “Constraints on the Equations of State of stiff anisotropic minerals: rutile, and the implications for rutile elastic barometry” [Miner. Mag. 83 (2019) pp. 339–347] , 2020, Mineralogical Magazine.

[7]  A. Reali,et al.  A numerical application of the Eshelby theory for geobarometry of non-ideal host-inclusion systems , 2020 .

[8]  X. Zhong,et al.  Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry , 2020 .

[9]  V. Galkin,et al.  Heat capacity, thermal expansion, and elastic parameters of pyrope , 2020, Journal of Thermal Analysis and Calorimetry.

[10]  R. Angel,et al.  Assessment of the reliability of elastic geobarometry with quartz inclusions , 2019 .

[11]  F. Marone,et al.  Fossil Subduction Recorded By Quartz From The Coesite Stability Field , 2019, Geology.

[12]  R. Angel,et al.  Constraints on the Equations of State of stiff anisotropic minerals: rutile, and the implications for rutile elastic barometry , 2019, Mineralogical Magazine.

[13]  A. Kirfel,et al.  Thermal expansion and thermal pressure in Co and Ni olivines: A comparison with Mn and Fe olivines , 2019, European Journal of Mineralogy.

[14]  S. Gréaux,et al.  Density variations of Cr-rich garnets in the upper mantle inferred from the elasticity of uvarovite garnet , 2018, Comptes Rendus Geoscience.

[15]  R. Angel,et al.  Stress, strain and Raman shifts , 2018, Zeitschrift für Kristallographie - Crystalline Materials.

[16]  C. Geiger,et al.  Recent developments and the future of low‐T calorimetric investigations in the Earth sciences: Consequences for thermodynamic calculations and databases , 2018 .

[17]  X. Zhong,et al.  Tiny timekeepers witnessing high-rate exhumation processes , 2018, Scientific Reports.

[18]  R. Angel,et al.  40 years of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions , 2018, Physics and Chemistry of Minerals.

[19]  R. Angel,et al.  EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry , 2017 .

[20]  R. Angel,et al.  A simple and generalised P–T–V EoS for continuous phase transitions, implemented in EosFit and applied to quartz , 2017, Contributions to Mineralogy and Petrology.

[21]  R. Angel,et al.  Thermo-elastic behavior of grossular garnet at high pressures and temperatures , 2017 .

[22]  R. Angel,et al.  Extending the single-crystal quartz pressure gauge up to hydrostatic pressure of 19 GPa , 2016 .

[23]  D. Frost,et al.  Elastic wave velocities in polycrystalline Mg3Al2Si3O12-pyrope garnet to 24 GPa and 1300 K , 2016 .

[24]  T. Irifune,et al.  Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1700 K , 2015 .

[25]  M. Domeneghetti,et al.  Diamond–garnet geobarometry: The role of garnet compressibility and expansivity , 2015 .

[26]  B. Zhang,et al.  P-V-T equation of state of Ca3Cr2Si3O12 uvarovite garnet by using a diamond-anvil cell and in-situ synchrotron X-ray diffraction , 2015 .

[27]  S. Clark,et al.  Thermo-compression of pyrope-grossular garnet solid solutions: Non-linear compositional dependence , 2014 .

[28]  R. Angel,et al.  EosFit7c and a Fortran module (library) for equation of state calculations , 2014 .

[29]  Liping Wang,et al.  Elasticity and sound velocities of polycrystalline grossular garnet (Ca3Al2Si3O12) at simultaneous high pressures and high temperatures , 2014 .

[30]  S. Gréaux,et al.  P–V–T equation of state of Mn3Al2Si3O12 spessartine garnet , 2014, Physics and Chemistry of Minerals.

[31]  A. Kirfel,et al.  Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series , 2012 .

[32]  A. Benisek,et al.  Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties , 2012 .

[33]  A. Benisek,et al.  Grossular: A crystal-chemical, calorimetric, and thermodynamic study , 2012 .

[34]  H. Ohfuji,et al.  Elasticity and sound velocities of polycrystalline Mg3Al2(SiO4)3 garnet up to 20 GPa and 1700 K , 2012 .

[35]  T. Irifune,et al.  Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1,700 K , 2012, Physics and Chemistry of Minerals.

[36]  C. Chopin,et al.  Eclogitization of the Monviso ophiolite (W. Alps) and implications on subduction dynamics , 2012 .

[37]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[38]  Y. Kono,et al.  P–V–T equation of state of Ca3Al2Si3O12 grossular garnet , 2011 .

[39]  Y. Kono,et al.  Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K , 2010 .

[40]  G. Helffrich,et al.  Physical contradictions and remedies using simple polythermal equations of state , 2009 .

[41]  C. Geiger,et al.  A calorimetric investigation of spessartine: Vibrational and magnetic heat capacity , 2009 .

[42]  R. Liebermann,et al.  In search of the mixed derivative ∂2M/∂P∂T (M = G, K): joint analysis of ultrasonic data for polycrystalline pyrope from gas- and solid-medium apparatus , 2007 .

[43]  A. Chopelas Modeling the thermodynamic parameters of six endmember garnets at ambient and high pressures from vibrational data , 2006 .

[44]  D. Neuville,et al.  Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C , 2006 .

[45]  C. Geiger,et al.  Heat capacities and entropies of mixing of pyrope-grossular (Mg3Al2Si3O12-Ca3Al2Si3O12) garnet solid solutions: A low-temperature calorimetric and a thermodynamic investigation , 2006 .

[46]  Bruce A. Finlayson,et al.  Equations of State , 2006 .

[47]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[48]  U. Rodehorst,et al.  Local structural heterogeneity, mixing behaviour and saturation effects in the grossular–spessartine solid solution , 2004 .

[49]  A. Sani,et al.  High-pressure synchrotron X-ray diffraction study of spessartine and uvarovite: A comparison between different equation of state models , 2004 .

[50]  S. Sinogeikin,et al.  Elasticity of pyrope and majorite-pyrope solid solutions to high temperatures , 2002 .

[51]  S. Sinogeikin,et al.  Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell , 2000 .

[52]  C. Geiger,et al.  Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures , 1999 .

[53]  R. Liebermann,et al.  Elastic wave velocities of Mg3Al2Si3O12-pyrope garnet to 10 GPa , 1999 .

[54]  Russell J. Hemley,et al.  The high-pressure, single-crystal elasticity of pyrope, grossular, and andradite , 1999 .

[55]  A. Kutoglu,et al.  Hydrostatic compression and crystal structure of pyrope to 33 GPa , 1998 .

[56]  P. Richet,et al.  High-temperature thermal expansion and decomposition of garnets , 1998 .

[57]  A. Bosenick,et al.  Powder X ray diffraction study of synthetic pyrope‐grossular garnets between 20 and 295 K , 1997 .

[58]  R. Angel,et al.  The Use of Quartz as an Internal Pressure Standard in High-Pressure Crystallography , 1997 .

[59]  J. Brown,et al.  Effects of static non-hydrostatic stress on the R lines of ruby single crystals , 1996 .

[60]  A. Bosenick,et al.  HEAT CAPACITY MEASUREMENTS OF SYNTHETIC PYROPE-GROSSULAR GARNETS BETWEEN 320 AND 1000 K BY DIFFERENTIAL SCANNING CALORIMETRY , 1996 .

[61]  E. Salje Chemical mixing and structural phase transitions: the plateau effect and oscillatory zoning near surfaces and interfaces;Chemical mixing and structural phase transitions: the plateau effect and oscillatory zoning near surfaces and interfaces , 1995 .

[62]  J. Ganguly,et al.  Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties , 1995 .

[63]  H. Mao,et al.  High-pressure phase transition in brucite, Mg(OH)2 , 1995 .

[64]  O. Anderson,et al.  High-temperature thermal expansion and elasticity of calcium-rich garnets , 1992 .

[65]  T. Armbruster,et al.  Single-crystal X-ray structure study of synthetic pyrope almandine garnets at 100 and 293 K , 1992 .

[66]  N. Ross Lattice vibration and mineral stability , 1992 .

[67]  J. Leger,et al.  Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa , 1990 .

[68]  J. Bass Elasticity of grossular and spessartite garnets by Brillouin spectroscopy , 1989 .

[69]  J. Orear LEAST SQUARES WHEN BOTH VARIABLES HAVE UNCERTAINTIES , 1982 .

[70]  R. Hazen Comparative crystal chemistry , 1982 .

[71]  B. Wood,et al.  Volume behavior of silicate solid solutions , 1980 .

[72]  Susan Werner Kieffer,et al.  Thermodynamics and lattice vibrations of minerals: 1. Mineral heat capacities and their relationships to simple lattice vibrational models , 1979 .

[73]  B. Skinner Physical properties of end-members of the garnet group , 1956 .

[74]  Domeneghetti,et al.  Thermo-elastic behaviour of grossular garnet at high pressures and 1 temperatures 2 , 2022 .