Palladium Nanoparticles Supported on Mixed-Linker Metal–Organic Frameworks as Highly Active Catalysts for Heck Reactions

Well-dispersed palladium nanoparticles (Pd NPs) supported on amine-functionalized, mixed-linker metal–organic frameworks (MIXMOFs) based on MIL-53(Al) were prepared by using the ion-exchange method. Pd NPs were characterized by powder X-ray diffraction (XRD), N2 adsorption, transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The mean diameter of Pd NPs is approximately 3.2 nm. It was found that the Pd NPs supported on amine-functionalized MIXMOFs are stable at high temperature. The Pd NPs exhibit efficient catalytic activity for Heck reaction and can be easily recovered and reused.

[1]  Tianfu Liu,et al.  Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction , 2011 .

[2]  Freek Kapteijn,et al.  Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity , 2011 .

[3]  O. Yaghi,et al.  Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake. , 2011, Inorganic chemistry.

[4]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[5]  Christian Pradel,et al.  Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process , 2011 .

[6]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[7]  Hong Zhao,et al.  A simple, efficient and recyclable phosphine-free catalytic system for Suzuki―Miyaura reaction of aryl bromides , 2011 .

[8]  Gregory S. Smith,et al.  Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki-Miyaura and Heck cross-coupling reactions , 2011 .

[9]  M. Zawadzki,et al.  The Heck arylation of mono- and disubstituted olefins catalyzed by palladium supported on alumina-based oxides , 2011 .

[10]  Zhe Gao,et al.  Pd-loaded superparamagnetic mesoporous NiFe2O4 as a highly active and magnetically separable catalyst for Suzuki and Heck reactions , 2011 .

[11]  C. Sanchez,et al.  Palladium nanoparticles heterogeneous nucleation within organically grafted silica foams and their use as catalyst supports toward the Suzuki-Miyaura and Mizoroki-Heck coupling reactions , 2010 .

[12]  S. Che,et al.  Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction , 2010 .

[13]  A. Baiker,et al.  Effect of Dehydration on the Local Structure of Framework Aluminum Atoms in Mixed Linker MIL-53(Al) Materials Studied by Solid-State NMR Spectroscopy , 2010 .

[14]  J. Čejka,et al.  Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction , 2010 .

[15]  Seth M. Cohen,et al.  Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification. , 2010, Inorganic chemistry.

[16]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[17]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[18]  Wenbin Lin,et al.  Nanoscale Metal–Organic Frameworks: Magnetic Resonance Imaging Contrast Agents and Beyond , 2010 .

[19]  K. Köhler,et al.  Palladium leaching dependent on reaction parameters in Suzuki–Miyaura coupling reactions catalyzed by palladium supported on alumina under mild reaction conditions , 2010 .

[20]  L. Bertinetti,et al.  New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): Preparation, structural study and catalytic properties , 2010 .

[21]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[22]  M. Buchmeiser,et al.  Ring-opening metathesis polymerization based pore-size-selective functionalization of glycidyl methacrylate based monolithic media: access to size-stable nanoparticles for ligand-free metal catalysis. , 2010, Chemistry.

[23]  A. Baiker,et al.  Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). , 2010, Dalton transactions.

[24]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[25]  A. Baiker,et al.  MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application , 2010 .

[26]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[27]  A. Matzger,et al.  MOF@MOF: microporous core-shell architectures. , 2009, Chemical communications.

[28]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[29]  A. Nacci,et al.  Heck reactions with palladium nanoparticles in ionic liquids: coupling of aryl chlorides with deactivated olefins. , 2009, Angewandte Chemie.

[30]  A. Baiker,et al.  Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2 , 2009 .

[31]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[32]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[33]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[34]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[35]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[36]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[37]  D. Vos,et al.  Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework , 2009 .

[38]  J. Čejka,et al.  Preparation of heterogeneous catalysts supported on mesoporous molecular sieves modified with various N-groups and their use in the Heck reaction , 2009 .

[39]  G. Polzonetti,et al.  Palladium nanoparticles supported on polyvinylpyridine: Catalytic activity in Heck-type reactions and XPS structural studies , 2009 .

[40]  D. Zhao,et al.  Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. , 2009, Journal of the American Chemical Society.

[41]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[42]  De Chen,et al.  Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction , 2009 .

[43]  C. Frost,et al.  Post-synthetic modification of tagged metal-organic frameworks. , 2008, Angewandte Chemie.

[44]  K. Qiao,et al.  An efficient Heck reaction in water catalyzed by palladium nanoparticles immobilized on imidazolium–styrene copolymers , 2008 .

[45]  O. Lebedev,et al.  Direct Imaging of Loaded Metal−Organic Framework Materials (Metal@MOF-5) , 2008 .

[46]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[47]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[48]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[49]  G. Férey,et al.  Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system. , 2007, Physical chemistry chemical physics : PCCP.

[50]  Christopher W. Jones,et al.  On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review , 2006 .

[51]  M. Muhler,et al.  Metall@MOF: Beladung hoch poröser Koordinationspolymergitter durch Metallorganische Chemische Dampfabscheidung , 2005 .

[52]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[53]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[54]  R. Heck Palladium‐Catalyzed Vinylation of Organic Halides , 2005 .

[55]  M. Reetz,et al.  Ligand-free Heck reactions using low Pd-loading. , 2004, Chemical communications.

[56]  S. Buchwald,et al.  A rationally designed universal catalyst for Suzuki-Miyaura coupling processes. , 2004, Angewandte Chemie.

[57]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[58]  G. C. Fu,et al.  Suzuki cross-couplings of alkyl tosylates that possess beta hydrogen atoms: synthetic and mechanistic studies. , 2002, Angewandte Chemie.

[59]  G. C. Fu,et al.  Method for palladium-catalyzed cross-couplings of simple alkyl chlorides: Suzuki reactions catalyzed by [Pd2(dba)3]/PCy3. , 2002, Angewandte Chemie.

[60]  S. Buchwald,et al.  A highly active Suzuki catalyst for the synthesis of sterically hindered biaryls: novel ligand coordination. , 2002, Journal of the American Chemical Society.

[61]  G. C. Fu,et al.  A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. , 2001, Journal of the American Chemical Society.

[62]  G. C. Fu,et al.  Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions , 2000 .

[63]  M. Buchmeiser,et al.  Access to Well-Defined Heterogeneous Catalytic Systems via Ring-Opening Metathesis Polymerization (ROMP): Applications in Palladium(II)-Mediated Coupling Reactions , 1999 .

[64]  S. Buchwald,et al.  Highly Active Palladium Catalysts for Suzuki Coupling Reactions , 1999 .

[65]  Stephen L. Buchwald,et al.  Ein hochaktiver Katalysator für Aminierung und Suzuki‐Kupplung von Arylchloriden bei Raumtemperatur , 1999 .

[66]  Buchwald,et al.  A Highly Active Catalyst for the Room-Temperature Amination and Suzuki Coupling of Aryl Chlorides. , 1999, Angewandte Chemie.

[67]  G. C. Fu,et al.  A Convenient and General Method for Pd-Catalyzed Suzuki Cross-Couplings of Aryl Chlorides and Arylboronic Acids. , 1998, Angewandte Chemie.

[68]  Adam F. Littke,et al.  EINE BEQUEME UND ALLGEMEIN ANWENDBARE METHODE FUR PD-KATALYSIERTE SUZUKI-KREUZKUPPLUNGEN VON ARYLCHLORIDEN UND ARYLBORONSAUREN , 1998 .

[69]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[70]  M. Buchmeiser,et al.  Rapid Screening of New Polymer-Supported Palladium (II) Bis(3,4,5,6-tetrahydropyrimidin-2-ylidenes)† , 2004 .