Stefan problems for moving phase change materials and multiple solutions

[1]  Q. Ma,et al.  Phase change mass transfer model for frost growth and densification , 2016 .

[2]  Liwu Fan,et al.  A similarity solution to unidirectional solidification of nano-enhanced phase change materials (NePCM) considering the mushy region effect , 2015 .

[3]  Michael J. Allen,et al.  Melting and solidification enhancement using a combined heat pipe, foil approach , 2014 .

[4]  Shuli Liu,et al.  Mathematical solutions and numerical models employed for the investigations of PCMs׳ phase transformations , 2014 .

[5]  Yang Zhou,et al.  Exact solution for a Stefan problem with latent heat a power function of position , 2014 .

[6]  J. Khodadadi,et al.  One-dimensional Stefan problem formulation for solidification of nanostructure-enhanced phase change materials (NePCM) , 2013 .

[7]  V. Voller,et al.  Two exact solutions of a Stefan problem with varying diffusivity , 2013 .

[8]  S. Mitchell,et al.  Energy conservation in the one-phase supercooled Stefan problem , 2012 .

[9]  Natalia N. Salva,et al.  Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions , 2011 .

[10]  A. V. Fedorov,et al.  Mathematical modeling of melting of nano-sized metal particles , 2011 .

[11]  M. Jarrold,et al.  Melting and freezing of metal clusters. , 2011, Annual review of physical chemistry.

[12]  V. Voller,et al.  Analytical and numerical solution of a generalized Stefan problem exhibiting two moving boundaries with application to ocean delta formation , 2010 .

[13]  S. Tabakova,et al.  Freezing of a supercooled spherical droplet with mixed boundary conditions , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  James M. Hill,et al.  Micro/nanoparticle melting with spherical symmetry and surface tension , 2009 .

[15]  James M. Hill,et al.  Nanoparticle melting as a stefan moving boundary problem. , 2009, Journal of nanoscience and nanotechnology.

[16]  Q. Mei,et al.  Melting and superheating of crystalline solids: From bulk to nanocrystals , 2007 .

[17]  Kenneth G. Libbrecht,et al.  The physics of snow crystals , 2005 .

[18]  Juan Pablo Trelles,et al.  Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling , 2003 .

[19]  Philippe Martin,et al.  MOTION PLANNING FOR A NONLINEAR STEFAN PROBLEM , 2003 .

[20]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[21]  Jian Lu,et al.  Mathematical modeling of laser induced heating and melting in solids , 2001 .

[22]  M. Conti Density change effects on crystal growth from the melt. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Ariel L. Lombardi,et al.  Similarity Solutions for Thawing Processes with a Heat Flux Condition at the Fixed Boundary , 2001 .

[24]  Schafer,et al.  Melting of isolated tin nanoparticles , 2000, Physical review letters.

[25]  D. V. Schroeder,et al.  An Introduction to Thermal Physics , 2000 .

[26]  Guus Segal,et al.  A Conserving Discretization for the Free Boundary in a Two-Dimensional Stefan Problem , 1998 .

[27]  S. Argyropoulos,et al.  Mathematical modelling of solidification and melting: a review , 1996 .

[28]  A. Schmidt Computation of Three Dimensional Dendrites with Finite Elements , 1996 .

[29]  Lianmao Peng,et al.  Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices , 1996 .

[30]  Ivan G. Götz,et al.  Two-phase Stefan problem with supercooling , 1995 .

[31]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[32]  James M. Hill,et al.  One-Dimensional Stefan Problems: An Introduction , 1987 .

[33]  C Vuik,et al.  Numerical solution of an etching problem , 1985 .

[34]  C. A. Anderson A New Picture of the Raw-wool Fibre , 1982 .

[35]  K. Stewartson,et al.  On Stefan’s problem for spheres , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  K. Hayakawa,et al.  Solution of the Characteristic Equation Involved in the Transient Heat Conduction for Foods Approximated by an Infinite Slab1 , 1970 .

[37]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[38]  J. Stefan Über die Theorie der Eisbildung , 1890 .

[39]  Steven I. Barry,et al.  Exact and numerical solutions to a Stefan problem with two moving boundaries , 2008 .

[40]  Philippe Souplet,et al.  Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem , 2001 .

[41]  J. Crank Free and moving boundary problems , 1984 .