Derivation of the PHD and CPHD Filters Based on Direct Kullback–Leibler Divergence Minimization

In this paper, we provide novel derivations of the probability hypothesis density (PHD) and cardinalised PHD (CPHD) filters without using probability generating functionals or functional derivatives. We show that both the PHD and CPHD filters fit in the context of assumed density filtering and implicitly perform Kullback-Leibler divergence (KLD) minimizations after the prediction and update steps. We perform the KLD minimizations directly on the multitarget prediction and posterior densities.

[1]  Ba-Ngu Vo,et al.  A Note on the Reward Function for PHD Filters with Sensor Control , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[3]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[4]  S. Godsill,et al.  Auxiliary Particle Implementation of the Probability Hypothesis Density Filter , 2007, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[5]  Peter Willett,et al.  The Bin-Occupancy Filter and Its Connection to the PHD Filters , 2009, IEEE Transactions on Signal Processing.

[6]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[7]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[8]  M. Ulmke,et al.  "Spooky Action at a Distance" in the Cardinalized Probability Hypothesis Density Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Robin J. Evans,et al.  Fundamentals of Object Tracking , 2011 .

[10]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[11]  Daniel E. Clark,et al.  Generalized PHD filters via a general chain rule , 2012, 2012 15th International Conference on Information Fusion.

[12]  Emilio Maggio,et al.  Efficient Multitarget Visual Tracking Using Random Finite Sets , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[13]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[14]  Ba-Ngu Vo,et al.  The Cauchy-Schwarz divergence for poisson point processes , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[15]  Ángel F. García-Fernández,et al.  Analysis of Kalman Filter Approximations for Nonlinear Measurements , 2013, IEEE Transactions on Signal Processing.

[16]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[17]  Jason L. Williams,et al.  An Efficient, Variational Approximation of the Best Fitting Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[18]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[19]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[20]  Daniel E. Clark,et al.  Faà di Bruno’s formula and spatial cluster modelling , 2013 .

[21]  Xin Chen,et al.  The Spline Probability Hypothesis Density Filter , 2013, IEEE Transactions on Signal Processing.

[22]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[23]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[24]  Ba-Ngu Vo,et al.  Filters for Spatial Point Processes , 2009, SIAM J. Control. Optim..

[25]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[26]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[28]  Ba-Ngu Vo,et al.  Adaptive Target Birth Intensity for PHD and CPHD Filters , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Fredrik Gustafsson,et al.  Road Intensity Based Mapping Using Radar Measurements With a Probability Hypothesis Density Filter , 2011, IEEE Transactions on Signal Processing.

[30]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[31]  Arnaud Doucet,et al.  On the conditional distributions of spatial point processes , 2011, Advances in Applied Probability.

[32]  Giorgio Battistelli,et al.  Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability , 2014, Autom..

[33]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[34]  Giorgio Battistelli,et al.  Consensus CPHD Filter for Distributed Multitarget Tracking , 2013, IEEE Journal of Selected Topics in Signal Processing.

[35]  Ba-Ngu Vo,et al.  CPHD Filtering With Unknown Clutter Rate and Detection Profile , 2011, IEEE Transactions on Signal Processing.

[36]  Lennart Svensson,et al.  A CPHD Filter for Tracking With Spawning Models , 2013, IEEE Journal of Selected Topics in Signal Processing.

[37]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[38]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[39]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.

[40]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[41]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[42]  Vikram Krishnamurthy,et al.  Integrated Tracking, Classification, and Sensor Management , 2013 .