Mean curvature evolution and surface area scaling in image filtering

Representing the image as a surface, an inhomogeneous diffusion algorithm is developed, evolving the surface at a speed proportional to its mean curvature, reducing noise while preserving image structure. An adaptive scaling parameter increases the speed of the diffusion. The properties of a discrete algorithm are demonstrated experimentally.

[1]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[2]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[3]  G. Huisken,et al.  Interior estimates for hypersurfaces moving by mean curvature , 1991 .

[4]  Gary E. Ford,et al.  The evolution of mean curvature in image filtering , 1994, Proceedings of 1st International Conference on Image Processing.

[5]  G. Huisken,et al.  Mean curvature evolution of entire graphs , 1989 .

[6]  Guillermo Sapiro,et al.  Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[8]  Claus Gerhardt Evolutionary Surfaces of Prescribed Mean Curvature , 1980 .

[9]  G.E. Ford,et al.  Mean curvature evolution and surface area scaling in image filtering , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[10]  Kaleem Siddiqi,et al.  Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Gary E. Ford,et al.  Nonlinear adaptive image filtering based on inhomogeneous diffusion and differential geometry , 1994, Electronic Imaging.

[12]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..