The correspondence principle for Idempotent Calculus and some computer applications // Gunawardena

This paper is devoted to heuristic aspects of the so-called idempotent calculus. There is a correspondence between important, useful and interesting constructions and results over the field of real (or complex) numbers and similar constructions and results over idempotent semirings in the spirit of N. Bohr's correspondence principle in Quantum Mechanics. Some problems nonlinear in the traditional sense (for example, the Bellman equation and its generalizations) turn out to be linear over a suitable semiring; this linearity considerably simplifies the explicit construction of solutions. The theory is well advanced and includes, in particular, new integration theory, new linear algebra, spectral theory and functional analysis. It has a wide range of applications. Besides a survey of the subject, in this paper the correspondence principle is used to develop an approach to object-oriented software and hardware design for algorithms of idempotent calculus.

[1]  V. Maslov,et al.  Unifying Approach to Software and Hardware Design for Scientific Calculations , 1999, quant-ph/9904024.

[2]  V. Maslov,et al.  Boundary-value problems for stationary Hamilton-Jacobi and Bellman equations , 1997 .

[3]  Jeremy Gunawardena,et al.  Min-max functions , 1994, Discret. Event Dyn. Syst..

[4]  Jean-Charles Noyer,et al.  Maslov optimisation theory: Stochastic interpretation, particle resolution , 1994 .

[5]  M. Shubin Algebraic remarks on idempotent semirings and the kernel theorem in spaces of bounded functions , 1992 .

[6]  A. Tarashchan,et al.  The Fourier transform and semirings of Pareto sets , 1992 .

[7]  Mark Lorenz,et al.  Object-Oriented Software Development: A Practical Guide , 1992 .

[8]  Daniel Krob,et al.  The Equality Problem for Rational Series with Multiplicities in the tropical Semiring is Undecidable , 1992, Int. J. Algebra Comput..

[9]  P I Dudnikov,et al.  ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION , 1992 .

[10]  Edouard Wagneur,et al.  Moduloïds and pseudomodules 1. Dimension theory , 1989, Discret. Math..

[11]  Imre Simon,et al.  Recognizable Sets with Multiplicities in the Tropical Semiring , 1988, MFCS.

[12]  Daniel J. Lehmann,et al.  Algebraic Structures for Transitive Closure , 1976, Theor. Comput. Sci..

[13]  B. Carré An Algebra for Network Routing Problems , 1971 .

[14]  Stephen J. Garland,et al.  Algorithm 97: Shortest path , 1962, Commun. ACM.

[15]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[16]  Vassili N. Kolokoltsov,et al.  Idempotency: A new differential equation for the dynamics of the Pareto sets , 1998 .

[17]  Jean-Pierre Quadrat,et al.  Max-Plus Algebra and Applications to System Theory and Optimal Control , 1995 .

[18]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[19]  J. Quadrat,et al.  BELLMAN PROCESSES , 1994 .

[20]  E. Wagneur Subdirect sum decomposition of finite dimensional pseudomodules , 1994 .

[21]  S. N. Samborski Time discrete and continuous control problems convergence of value functions , 1994 .

[22]  G. Cohen,et al.  Dioids and discrete event systems , 1994 .

[23]  Stéphane Gaubert,et al.  Rational series over dioids and discrete event systems , 1994 .

[24]  P. Dudnikov,et al.  Networks methods for endomorphisms of semimodules over min-plus algebras , 1994 .

[25]  Imre Simon,et al.  On Semigroups of Matrices over the Tropical Semiring , 1994, RAIRO Theor. Informatics Appl..

[26]  Geert Jan Olsder,et al.  On structural properties of min-max systems , 1994 .

[27]  A V Finkelstein,et al.  Computation of biopolymers: a general approach to different problems. , 1993, Bio Systems.

[28]  Alain Jean-marie,et al.  Analysis of Stochastic Min-Max Systems: Results and Conjectures , 1993 .

[29]  Jonathan S. Golan,et al.  The theory of semirings with applications in mathematics and theoretical computer science , 1992, Pitman monographs and surveys in pure and applied mathematics.

[30]  Stanislav G. Sedukhin,et al.  Design and analysis of systolic algorithms for the algebraic path problem , 1992 .

[31]  J. Quadrat,et al.  THEOREMES ASYMPTOTIQUES EN PROGRAMMATION DYNAMIQUE , 1990 .

[32]  Victor Pavlovich Maslov,et al.  Mathematical aspects of computer engineering , 1988 .

[33]  Bernd Mahr,et al.  Iteration and summability in semirings , 1984 .

[34]  J. Quadrat,et al.  Analyse du comportement periodique de systemes de production par la theorie des dioides , 1983 .

[35]  U. Zimmermann Linear and combinatorial optimization in ordered algebraic structures , 1981 .

[36]  M. Gondran,et al.  Path Algebra and Algorithms , 1975 .

[37]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[38]  Alfred V. Aho,et al.  The theory of parsing, translation, and compiling. 2: Compiling , 1973 .

[39]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[40]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[41]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.