Organic Synthesis as Artificial Intelligence Planning

We explore advantages that can be gained from using expressive logic languages for semantic modelling of chemical reactions. First, we present a novel approach for logical representation of notions in organic chemistry, as well as for reasoning about generic chemical reactions. Subsequently, using this new semantic modeling of reactions, we explore what reasoning problems can be solved. We focus on solving organic chemistry synthesis problems, where the goal is to synthesize the target molecule from a set of starting stage molecules. We argue that this problem can be reduced to a planning problem in Artificial Intelligence. We conduct experimental study including empirical assessment of a PROLOG planner and two state-of-the-art planners. We investigate if they are capable of solving a set of instances of the organic synthesis problem. We report numerical data from our study and do comparative analysis of the planners. The novelty of our work is in using state-of-the art planners for solving the organic synthesis problem. The significance of our work is in methodology that we developed and in showing that expressive logical language can be useful for semantic modeling.

[1]  W. T. Wipke,et al.  Computer-assisted synthetic analysis. Facile man-machine communication of chemical structure by interactive computer graphics , 1972 .

[2]  James B. Hendrickson,et al.  A logic-based program for synthesis design , 1985 .

[3]  Bartosz A. Grzybowski,et al.  Synthetic popularity reflects chemical reactivity , 2009 .

[4]  Nicola Guarino,et al.  Sweetening Ontologies with DOLCE , 2002, EKAW.

[5]  Mikhail Soutchanski,et al.  Towards an Expressive Decidable Logical Action Theory , 2012, Description Logics.

[6]  Christoph Steinbeck,et al.  Self-organizing ontology of biochemically relevant small molecules , 2011, BMC Bioinformatics.

[7]  Michel Dumontier,et al.  Chemical Knowledge for the Semantic Web , 2008, DILS.

[8]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[9]  Anthony P. F. Cook,et al.  Computer‐aided synthesis design: 40 years on , 2012 .

[10]  Nikolai S. Zefirov,et al.  Systematic Search for New Types of Chemical Interconversions: Mathematical Models and Some Applications , 1998, J. Chem. Inf. Comput. Sci..

[11]  Derek Long Domain-Independent Planner Compilation , 1998 .

[12]  Boris Motik,et al.  OWL 2: The next step for OWL , 2008, J. Web Semant..

[13]  C. Steinbeck,et al.  The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web , 2011, PloS one.

[14]  Raymond Reiter,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2001 .

[15]  Herbert Gelernter,et al.  Building and Refining a Knowledge Base for Synthetic Organic Chemistry via the Methodology of Inductive and Deductive Machine Learning. , 1991 .

[16]  Michel Dumontier,et al.  Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration , 2011, J. Cheminformatics.

[17]  Gerhard Lakemeyer,et al.  A Situation-Calculus Semantics for an Expressive Fragment of PDDL , 2007, AAAI.

[18]  Michel Dumontier,et al.  Prototype semantic infrastructure for automated small molecule classification and annotation in lipidomics , 2011, BMC Bioinformatics.

[19]  Kei-Hoi Cheung,et al.  BioPAX – A community standard for pathway data sharing , 2010, Nature Biotechnology.

[20]  Michel Dumontier Situational Modeling: Defining Molecular Roles in Biochemical Pathways and Reactions , 2008, OWLED.

[21]  Drew McDermott,et al.  The 1998 AI Planning Systems Competition , 2000, AI Mag..

[22]  Igor I. Baskin,et al.  SYMBEQ Program and Its Application in Computer-Assisted Reaction Design , 1994, J. Chem. Inf. Comput. Sci..

[23]  V. K. Finn,et al.  Creating a machine language for organic chemistry , 1963, Inf. Storage Retr..

[24]  John G. Gibbons Knowledge in Action , 2001 .

[25]  Mikhail Soutchanski,et al.  A description logic based situation calculus , 2010, Annals of Mathematics and Artificial Intelligence.

[26]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the World Wide Web. 4. CML Schema , 2003, J. Chem. Inf. Comput. Sci..

[27]  Despoina Magka Ontology-Based Classification of Chemicals: a Logic Programming Approach , 2012, SWAT4LS.

[28]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the World Wide Web. 6. CMLReact, an XML Vocabulary for Chemical Reactions , 2006, J. Chem. Inf. Model..

[29]  Ivan Serina,et al.  LPG-TD : a Fully Automated Planner for PDDL 2 . 2 Domains , 2004 .

[30]  T. Takabatake,et al.  Computer-executed synthesis planning, a progress report , 1992 .

[31]  Robert Stevens,et al.  Structure-based classification and ontology in chemistry , 2012, Journal of Cheminformatics.

[32]  Christoph Steinbeck,et al.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 , 2012, Nucleic Acids Res..

[33]  Adrian Paschke,et al.  RuleML 1.0: The Overarching Specification of Web Rules , 2010, RuleML.

[34]  Derek Long,et al.  Domain-lndependent Planner Compilation , 1998 .

[35]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[36]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[37]  R. Hursthouse THE LOGIC OF DECISION AND ACTION , 1969 .

[38]  Michael Healy,et al.  Theory and Applications of Ontology: Computer Applications , 2010 .

[39]  Qiang Lu The Roamer Planner Random-Walk Assisted Best-First Search , 2011 .

[40]  Stephen Hanessian Man, machine and visual imagery in strategic synthesis planning: computer-perceived precursors for drug candidates. , 2005, Current opinion in drug discovery & development.

[41]  W. Todd Wipke,et al.  Computer-Assisted Synthetic Analysis at Merck , 1980, J. Chem. Inf. Comput. Sci..

[42]  D. Davidson Essays on actions and events , 1980 .

[43]  Michael Darsow,et al.  ChEBI: a database and ontology for chemical entities of biological interest , 2007, Nucleic Acids Res..

[44]  Fang Wei,et al.  Foundations of Rule-Based Query Answering , 2007 .

[45]  H. Herre General Formal Ontology (GFO): A Foundational Ontology for Conceptual Modelling , 2010 .

[46]  Barry Smith,et al.  Beyond Concepts: Ontology as Reality Representation , 2004 .

[47]  Shinsaku Fujita,et al.  Description of organic reactions based on imaginary transition structures. 1. Introduction of new concepts , 1986, J. Chem. Inf. Comput. Sci..

[48]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language , 2009 .

[49]  Boris Motik,et al.  Representing ontologies using description logics, description graphs, and rules , 2009, Artif. Intell..

[50]  William Lingran Chen,et al.  Chemoinformatics: Past, Present, and Future† , 2006, J. Chem. Inf. Model..

[51]  E J Corey,et al.  Computer-assisted design of complex organic syntheses. , 1969, Science.

[52]  Adrian Paschke,et al.  Reaction RuleML 1.0: Standardized Semantic Reaction Rules , 2012, RuleML.

[53]  Ivan Serina,et al.  Planning in PDDL2.2 Domains with LPG-td , 2004 .

[54]  Matthew H. Todd Computer-Aided Organic Synthesis , 2005 .

[55]  Ringo Baumann,et al.  Ontology of Time in GFO , 2012, FOIS.

[56]  Igor Jurisica,et al.  Construction of New Medicines via Game Proof Search , 2012, AAAI.

[57]  Jin Yang,et al.  Graph Theory for Rule-Based Modeling of Biochemical Networks , 2006, Trans. Comp. Sys. Biology.

[58]  David L. Davidson,et al.  The Logical Form of Action Sentences , 2001 .

[59]  Michael Grüninger,et al.  Foundational Process Relations in Bio-Ontologies , 2010, FOIS.

[60]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[61]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[62]  Adrian Paschke,et al.  Rules Capturing Events and Reactivity , 2009 .

[63]  Miklós Vargyas,et al.  Making Real Molecules in Virtual Space , 2004 .

[64]  Bernhard Nebel,et al.  In Defense of PDDL Axioms , 2003, IJCAI.

[65]  Yang Liu,et al.  Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation , 2009, J. Chem. Inf. Model..