Partial identification using random set theory

Abstract This paper illustrates how the use of random set theory can benefit partial identification analysis. We revisit the origins of Manski’s work in partial identification (e.g., Manski, 1989 , Manski, 1990 ) focusing our discussion on identification of probability distributions and conditional expectations in the presence of selectively observed data, statistical independence and mean independence assumptions, and shape restrictions. We show that the use of the Choquet capacity functional and the Aumann expectation of a properly defined random set can simplify and extend previous results in the literature. We pay special attention to explaining how the relevant random set needs to be constructed, depending on the econometric framework at hand. We also discuss limitations in the applicability of specific tools of random set theory to partial identification analysis.

[1]  Ilya Molchanov,et al.  Sharp identification regions in games , 2008 .

[2]  Xiaoxia Shi,et al.  Inference Based on Conditional Moment Inequalities , 2010 .

[3]  Yeneng Sun Integration of Correspondences on Loeb Spaces , 1997 .

[4]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[5]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[6]  Sokbae Lee,et al.  Intersection bounds: estimation and inference , 2009, 0907.3503.

[7]  T. Kamae,et al.  Stochastic Inequalities on Partially Ordered Spaces , 1977 .

[8]  T. Speed,et al.  On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9 , 1990 .

[9]  Thierry Magnac,et al.  Set Identified Linear Models , 2011 .

[10]  Jörg Stoye,et al.  More on Confidence Intervals for Partially Identified Parameters , 2008 .

[11]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[12]  M. Sobel,et al.  Identification Problems in the Social Sciences. , 1996 .

[13]  Charles F. Manski,et al.  Identification for Prediction and Decision , 2008 .

[14]  Marc Henry,et al.  Set Identification in Models with Multiple Equilibria , 2011, 2102.12249.

[15]  Francesca Molinari,et al.  Rounding Probabilistic Expectations in Surveys , 2010, Journal of business & economic statistics : a publication of the American Statistical Association.

[16]  I. Molchanov,et al.  Sharp identification regions in models with convex moment predictions , 2010 .

[17]  I. Molchanov Limit theorems for convex hulls of random sets , 1993, Advances in Applied Probability.

[18]  Elie Tamer,et al.  Partial Identification in Econometrics , 2010 .

[19]  Tommy Norberg,et al.  On the existence of ordered couplings of random sets — with applications , 1992 .

[20]  Toru Kitagawa,et al.  The identification region of the potential outcome distributions under instrument independence , 2009, Journal of Econometrics.

[21]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[22]  I. V. Evstigneev,et al.  Regular Conditional Expectations of Correspondences , 1977 .

[23]  Francesca Molinari,et al.  Asymptotic Properties for a Class of Partially Identified Models , 2006 .

[24]  J. Pearl,et al.  Bounds on Treatment Effects from Studies with Imperfect Compliance , 1997 .

[25]  Zvi Artstein,et al.  On the Calculus of Closed Set-Valued Functions , 1974 .

[26]  M. Ponomareva Inference in Models Dened by Conditional Moment Inequalities with Continuous Covariates , 2009 .

[27]  Federico A. Bugni Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set , 2010 .

[28]  C. Manski Nonparametric Bounds on Treatment Effects , 1989 .

[29]  Marc Henry,et al.  Inference in Incomplete Models , 2006, 2102.12257.

[30]  C. Manski Monotone Treatment Response , 2009, Identification for Prediction and Decision.

[31]  V. Kreinovich,et al.  Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables , 2002 .

[32]  Maria Ponomareva,et al.  Misspecification in Moment Inequality Models: Back to Moment Equalities? , 2011 .

[33]  C. Manski Anatomy of the Selection Problem , 1989 .

[34]  C. Manski Partial Identification of Probability Distributions , 2003 .

[35]  Jörg Stoye Bounds on Generalized Linear Predictors with Incomplete Outcome Data , 2007, Reliab. Comput..

[36]  Ivan A. Canay EL inference for partially identified models: Large deviations optimality and bootstrap validity , 2010 .

[37]  I. Molchanov Theory of Random Sets , 2005 .

[38]  Ilya Molchanov,et al.  Sharp identification regions in models with convex predictions: games, individual choice, and incomplete data , 2009 .

[39]  A. Galichon,et al.  A Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parameters , 2009, 2102.04151.

[40]  G. Choquet Theory of capacities , 1954 .

[41]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[42]  T. Magnac,et al.  Set Identified Linear Models , 2011 .

[43]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[44]  Philip A. Haile,et al.  Inference with an Incomplete Model of English Auctions , 2000, Journal of Political Economy.

[45]  Zvi Artstein,et al.  Distributions of random sets and random selections , 1983 .

[46]  G. Matheron Random Sets and Integral Geometry , 1976 .

[47]  Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure , 2008 .