Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems

Mixed integer programming (MIP) formulations for scheduling problems can be classified based on the decision variables upon which they rely. In this paper, four different MIP formulations based on four different types of decision variables are presented for various parallel machine scheduling problems. The goal of this research is to identify promising optimization formulation paradigms that can subsequently be used to either (1) solve larger practical scheduling problems of interest to optimality and/or (2) be used to establish tighter lower solution bounds for those under study. We present the computational results and discuss formulation efficacy for total weighted completion time and maximum completion time problems for the identical parallel machine case.

[1]  Martin W. P. Savelsbergh Branch and Price: Integer Programming with Column Generation , 2009, Encyclopedia of Optimization.

[2]  Kristina Soric A cutting plane algorithm for a single machine scheduling problem , 2000, Eur. J. Oper. Res..

[3]  Frits C. R. Spieksma,et al.  Scheduling jobs of equal length: complexity, facets and computational results , 1995, Math. Program..

[4]  P. Bhave,et al.  Integer programming formulations of vehicle routing problems , 1985 .

[5]  Martin W. P. Savelsbergh,et al.  Time-Indexed Formulations for Machine Scheduling Problems: Column Generation , 2000, INFORMS J. Comput..

[6]  Warren B. Powell,et al.  Solving Parallel Machine Scheduling Problems by Column Generation , 1999, INFORMS J. Comput..

[7]  Moshe Dror,et al.  Mathematical programming formulations for machine scheduling: A survey , 1991 .

[8]  Maurice Queyranne,et al.  Polyhedral Approaches to Machine Scheduling , 2008 .

[9]  J. Sousa,et al.  Time Indexed Formulations Of Non-Preemptive Single-Machine Schduling Problems , 1989 .

[10]  S. Dauzere-Peres An efficient formulation for minimizing the number of late jobs in single-machine scheduling , 1997, 1997 IEEE 6th International Conference on Emerging Technologies and Factory Automation Proceedings, EFTA '97.

[11]  George L. Nemhauser,et al.  A Cutting Plane Algorithm for the Single Machine Scheduling Problem with Release Times , 1992 .

[12]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[13]  Han Hoogeveen,et al.  Parallel Machine Scheduling by Column Generation , 1999, Oper. Res..

[14]  Lap Mui Ann Chan,et al.  Parallel Machine Scheduling, Linear Programming, and Parameter List Scheduling Heuristics , 1998, Oper. Res..

[15]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[16]  Nico Roos,et al.  Fourth International Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimisation Problems , 2002 .

[17]  Marjan van den Akker,et al.  Applying Column Generation to Machine Scheduling , 2005 .

[18]  Maurice Queyranne,et al.  Generic Scheduling Polyhedra and a New Mixed-Integer Formulation for Single-Machine Scheduling , 1992, IPCO.

[19]  Han Hoogeveen,et al.  Parallel Machine Scheduling Through Column Generation: Minimax Objective Functions , 2006, ESA.

[20]  Scott J. Mason,et al.  Parallel machine scheduling subject to auxiliary resource constraints , 2007 .

[21]  Maurice Queyranne,et al.  Single-Machine Scheduling Polyhedra with Precedence Constraints , 1991, Math. Oper. Res..

[22]  Ahmet B. Keha,et al.  Mixed integer programming formulations for single machine scheduling problems , 2009, Comput. Ind. Eng..

[23]  Maurice Queyranne,et al.  Structure of a simple scheduling polyhedron , 1993, Math. Program..

[24]  Laurence A. Wolsey,et al.  A time indexed formulation of non-preemptive single machine scheduling problems , 1992, Math. Program..

[25]  Stéphane Dauzère-Pérès,et al.  Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine , 2003 .

[26]  Martin E. Dyer,et al.  Formulating the single machine sequencing problem with release dates as a mixed integer program , 1990, Discret. Appl. Math..

[27]  J. A. Hoogeveen,et al.  Parallel machine scheduling through column generation : Minimax objective functions (Extended Abstract) , 2006 .

[28]  Martin W. P. Savelsbergh,et al.  A polyhedral approach to single-machine scheduling problems , 1999, Math. Program..

[29]  Fabián A. Chudak,et al.  A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine , 1999, Oper. Res. Lett..

[30]  Gilbert Laporte,et al.  A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for the capacitated vehicle routing problem , 2003, Eur. J. Oper. Res..

[31]  E. Balas On the facial structure of scheduling polyhedra , 1985 .

[32]  Gilbert Laporte,et al.  Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints , 1991, Oper. Res. Lett..

[33]  Hanif D. Sherali,et al.  Unrelated machine scheduling with time-window and machine downtime constraints: An application to a naval battle-group problem , 1994, Ann. Oper. Res..

[34]  Warren B. Powell,et al.  A column generation based decomposition algorithm for a parallel machine just-in-time scheduling problem , 1999, Eur. J. Oper. Res..