Factorizations of b[n]±1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers

[1]  Gian-Carlo Rota,et al.  History of Computing in the Twentieth Century , 1980 .

[2]  Curt Noll,et al.  The 25th and 26th Mersenne primes , 1980 .

[3]  H. C. Williams,et al.  A generalization of Lehmer's functions , 1976 .

[4]  Willis J. Alberda In this number , 1995 .

[5]  J. Pollard A monte carlo method for factorization , 1975 .

[6]  J. Brillhart,et al.  A method of factoring and the factorization of , 1975 .

[7]  J. M. Pollard,et al.  Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  D. H. Lehmer,et al.  A New Factorization Technique Using Quadratic Forms , 1974 .

[9]  Marvin C. Wunderlich,et al.  A design for a number theory package with an optimized trial division routine , 1974, CACM.

[10]  B. Tuckerman A search procedure and lower bound for odd perfect numbers , 1973 .

[11]  B Tuckerman The 24th mersenne prime. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Shanks Class number, a theory of factorization, and genera , 1971 .

[13]  H. Riesel A factor of the Fermat number , 1963 .

[14]  John Brillhart,et al.  On the factors of certain Mersenne numbers. II , 1960 .

[15]  Raphael M. Robinson,et al.  A report on primes of the form ⋅2ⁿ+1 and on factors of Fermat numbers , 1958 .

[16]  H. S. Uhler A new result concerning a Mersenne number , 1946 .

[17]  L. Mordell Guide to Tables in the Theory of Numbers , 1943, Nature.

[18]  D. H. Lehmer A factorization theorem applied to a test for primality , 1939 .

[19]  J. D. Elder Errata in the Lehmer factor stencils , 1937 .

[20]  D. H. Lehmer On Lucas's Test for the Primality of Mersenne's Numbers , 1935 .

[21]  D. H. Lehmer A machine for combining sets of linear congruences , 1934 .

[22]  Marshall Hall,et al.  Quadratic residues in factorization , 1933 .

[23]  D. H. Lehmer The Mechanical Combination of Linear Forms , 1928 .

[24]  D. H. Lehmer Tests for primality by the converse of Fermat’s theorem , 1927 .

[25]  D N Lehmer,et al.  On a New Method of Factorization. , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[27]  R. D. Carmichael,et al.  On the Numerical Factors of the Arithmetic Forms α n ± β n , 1913 .