Factorizations of b[n]±1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers
暂无分享,去创建一个
J. L. Selfridge | John Brillhart | D. H. Lehmer | Bryant Tuckerman | S. S. Wagstaff | S. Wagstaff | J. Brillhart | J. Selfridge | B. Tuckerman
[1] Gian-Carlo Rota,et al. History of Computing in the Twentieth Century , 1980 .
[2] Curt Noll,et al. The 25th and 26th Mersenne primes , 1980 .
[3] H. C. Williams,et al. A generalization of Lehmer's functions , 1976 .
[4] Willis J. Alberda. In this number , 1995 .
[5] J. Pollard. A monte carlo method for factorization , 1975 .
[6] J. Brillhart,et al. A method of factoring and the factorization of , 1975 .
[7] J. M. Pollard,et al. Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] D. H. Lehmer,et al. A New Factorization Technique Using Quadratic Forms , 1974 .
[9] Marvin C. Wunderlich,et al. A design for a number theory package with an optimized trial division routine , 1974, CACM.
[10] B. Tuckerman. A search procedure and lower bound for odd perfect numbers , 1973 .
[11] B Tuckerman. The 24th mersenne prime. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[12] D. Shanks. Class number, a theory of factorization, and genera , 1971 .
[13] H. Riesel. A factor of the Fermat number , 1963 .
[14] John Brillhart,et al. On the factors of certain Mersenne numbers. II , 1960 .
[15] Raphael M. Robinson,et al. A report on primes of the form ⋅2ⁿ+1 and on factors of Fermat numbers , 1958 .
[16] H. S. Uhler. A new result concerning a Mersenne number , 1946 .
[17] L. Mordell. Guide to Tables in the Theory of Numbers , 1943, Nature.
[18] D. H. Lehmer. A factorization theorem applied to a test for primality , 1939 .
[19] J. D. Elder. Errata in the Lehmer factor stencils , 1937 .
[20] D. H. Lehmer. On Lucas's Test for the Primality of Mersenne's Numbers , 1935 .
[21] D. H. Lehmer. A machine for combining sets of linear congruences , 1934 .
[22] Marshall Hall,et al. Quadratic residues in factorization , 1933 .
[23] D. H. Lehmer. The Mechanical Combination of Linear Forms , 1928 .
[24] D. H. Lehmer. Tests for primality by the converse of Fermat’s theorem , 1927 .
[25] D N Lehmer,et al. On a New Method of Factorization. , 2022, Proceedings of the National Academy of Sciences of the United States of America.
[26] L. Dickson. History of the Theory of Numbers , 1924, Nature.
[27] R. D. Carmichael,et al. On the Numerical Factors of the Arithmetic Forms α n ± β n , 1913 .