Fragments of Kripke–Platek set theory and the metamathematics of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alp

[1]  Michael Rathjen,et al.  The natural numbers in constructive set theory , 2008, Math. Log. Q..

[2]  Michael Nedzelsky,et al.  Recursion Theory I , 2008, Arch. Formal Proofs.

[3]  Richard Kaye,et al.  On Interpretations of Arithmetic and Set Theory , 2007, Notre Dame J. Formal Log..

[4]  Theodore A. Slaman Σ_{}-bounding and Δ_{}-induction , 2004 .

[5]  T. Slaman Sigma~n-bounding and Delta~n-induction , 2004 .

[6]  Theodore A. Slaman Σn-bounding and Δn-induction , 2004 .

[7]  T. Allen Thank you. , 2003, CJEM.

[8]  Yue Yang,et al.  Sigma2 Induction and Infinite Injury Priority Arguments, Part II: Tame Sigma2 Coding and the Jump Operator , 1997, Ann. Pure Appl. Log..

[9]  Marcia J. Groszek,et al.  The Sacks density theorem and Σ2-bounding , 1996, Journal of Symbolic Logic.

[10]  Michael Rathjen,et al.  Fragments of Kripke-Platek set theory with infinity , 1993 .

[11]  Joseph R. Schoenfield Recursion theory , 1993 .

[12]  Michael Rathjen A Proof-Theoretic Characterization of the Primitive Recursive Set Functions , 1992, J. Symb. Log..

[13]  Chi Tat Chong,et al.  The Degree of a Sigman Cut , 1990, Ann. Pure Appl. Log..

[14]  Robert S. Lubarsky An introduction to γ-recursion theory (or what to do in KP – Foundation) , 1990, Journal of Symbolic Logic.

[15]  Michael E. Mytilinaios Finite injury and Σ 1 -induction , 1989 .

[16]  Peter Clote,et al.  Review: , Modeles non Standard en Arithmetique et theorie des Ensembles; A. J. Wilkie, Modeles non Standard de L'Arithmetique, et Complexite Algorithmique; J.-P. Ressayre, Modeles non Standard et Sous-Systemes Remarquables de ZF , 1989 .

[17]  T. Slaman,et al.  Σ2-collection and the infinite injury priority method , 1988, Journal of Symbolic Logic.

[18]  $\beta $-recursion theory , 1979 .

[19]  J. Paris,et al.  ∑n-Collection Schemas in Arithmetic , 1978 .

[20]  Richard A. Shore,et al.  Some More Minimal Pairs of α-Recursively Enumerable Degrees , 1978, Math. Log. Q..

[21]  Wolfgang Maass,et al.  On minimal pairs and minimal degrees in higher recursion theory , 1977, Arch. Math. Log..

[22]  R. Shore The recursively enumerable α-degrees are dense , 1976 .

[23]  R. Shore,et al.  SPLITTING AN a-RECURSIVELY ENUMERABLE SET , 2010 .

[24]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[25]  Harvey M. Friedman,et al.  Countable models of set theories , 1973 .

[26]  Manuel Lerman,et al.  Some minimal pairs of α-recursively enumerable degrees , 1972 .

[27]  Stephen G. Simpson,et al.  The α-finite injury method , 1972 .

[28]  Gerald E. Sacks,et al.  The Recursively Enumerable Degrees are Dense , 1964 .

[29]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals (Second Paper) , 1955 .

[30]  Wilhelm Ackermann,et al.  Die Widerspruchsfreiheit der allgemeinen Mengenlehre , 1937 .