Fragments of Kripke–Platek set theory and the metamathematics of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alp
暂无分享,去创建一个
Wei Li | Sy-David Friedman | Tin Lok Wong | Wei Li | S. Friedman | Wei Li
[1] Michael Rathjen,et al. The natural numbers in constructive set theory , 2008, Math. Log. Q..
[2] Michael Nedzelsky,et al. Recursion Theory I , 2008, Arch. Formal Proofs.
[3] Richard Kaye,et al. On Interpretations of Arithmetic and Set Theory , 2007, Notre Dame J. Formal Log..
[4] Theodore A. Slaman. Σ_{}-bounding and Δ_{}-induction , 2004 .
[5] T. Slaman. Sigma~n-bounding and Delta~n-induction , 2004 .
[6] Theodore A. Slaman. Σn-bounding and Δn-induction , 2004 .
[7] T. Allen. Thank you. , 2003, CJEM.
[8] Yue Yang,et al. Sigma2 Induction and Infinite Injury Priority Arguments, Part II: Tame Sigma2 Coding and the Jump Operator , 1997, Ann. Pure Appl. Log..
[9] Marcia J. Groszek,et al. The Sacks density theorem and Σ2-bounding , 1996, Journal of Symbolic Logic.
[10] Michael Rathjen,et al. Fragments of Kripke-Platek set theory with infinity , 1993 .
[11] Joseph R. Schoenfield. Recursion theory , 1993 .
[12] Michael Rathjen. A Proof-Theoretic Characterization of the Primitive Recursive Set Functions , 1992, J. Symb. Log..
[13] Chi Tat Chong,et al. The Degree of a Sigman Cut , 1990, Ann. Pure Appl. Log..
[14] Robert S. Lubarsky. An introduction to γ-recursion theory (or what to do in KP – Foundation) , 1990, Journal of Symbolic Logic.
[15] Michael E. Mytilinaios. Finite injury and Σ 1 -induction , 1989 .
[16] Peter Clote,et al. Review: , Modeles non Standard en Arithmetique et theorie des Ensembles; A. J. Wilkie, Modeles non Standard de L'Arithmetique, et Complexite Algorithmique; J.-P. Ressayre, Modeles non Standard et Sous-Systemes Remarquables de ZF , 1989 .
[17] T. Slaman,et al. Σ2-collection and the infinite injury priority method , 1988, Journal of Symbolic Logic.
[18] $\beta $-recursion theory , 1979 .
[19] J. Paris,et al. ∑n-Collection Schemas in Arithmetic , 1978 .
[20] Richard A. Shore,et al. Some More Minimal Pairs of α-Recursively Enumerable Degrees , 1978, Math. Log. Q..
[21] Wolfgang Maass,et al. On minimal pairs and minimal degrees in higher recursion theory , 1977, Arch. Math. Log..
[22] R. Shore. The recursively enumerable α-degrees are dense , 1976 .
[23] R. Shore,et al. SPLITTING AN a-RECURSIVELY ENUMERABLE SET , 2010 .
[24] Jon Barwise,et al. Admissible sets and structures , 1975 .
[25] Harvey M. Friedman,et al. Countable models of set theories , 1973 .
[26] Manuel Lerman,et al. Some minimal pairs of α-recursively enumerable degrees , 1972 .
[27] Stephen G. Simpson,et al. The α-finite injury method , 1972 .
[28] Gerald E. Sacks,et al. The Recursively Enumerable Degrees are Dense , 1964 .
[29] S. Kleene. On the Forms of the Predicates in the Theory of Constructive Ordinals (Second Paper) , 1955 .
[30] Wilhelm Ackermann,et al. Die Widerspruchsfreiheit der allgemeinen Mengenlehre , 1937 .