The human body at cellular resolution: the NIH Human Biomolecular Atlas Program

Transformative technologies are enabling the construction of three-dimensional maps of tissues with unprecedented spatial and molecular resolution. Over the next seven years, the NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) intends to develop a widely accessible framework for comprehensively mapping the human body at single-cell resolution by supporting technology development, data acquisition, and detailed spatial mapping. HuBMAP will integrate its efforts with other funding agencies, programs, consortia, and the biomedical research community at large towards the shared vision of a comprehensive, accessible three-dimensional molecular and cellular atlas of the human body, in health and under various disease conditions. HuBMAP supports technology development, data acquisition, and spatial analyses to generate comprehensive molecular and cellular three-dimensional tissue maps.

Shila Ghazanfar | Yu Wang | Ziv Bar-Joseph | Kevin Otto | Robert F. Murphy | Katy Börner | Matthew Ruffalo | Benedict Paten | W. Christopher Lenhardt | Paula M. Mabee | Cole Trapnell | Griffin M. Weber | John C. Marioni | Kimberly Robasky | Orit Rozenblatt-Rosen | Aviv Regev | Ying Zhu | Eyal Fisher | Hayan Lee | Guo-Cheng Yuan | Sushma A. Akoju | Jocelyn Y. Kishi | Peng Yin | Carl Kingsford | Ed Esplin | Jonathan C. Silverstein | Garry P. Nolan | Ken Lau | Paul Macklin | Samuel H. Friedman | Jay Shendure | Philip D. Blood | Amir Bahmani | Sergio Maffioletti | Agnes B. Fogo | Michael P. Snyder | Peter V. Kharchenko | James P. Sluka | Randy W. Heiland | Nicholas A. Nystrom | Danielle B. Gutierrez | Bernd Bodenmiller | Ellen M. Quardokus | Sylvia K. Plevritis | Leonard E. Cross | Jeffrey M. Spraggins | Rahul Satija | Andrew Butler | Tim Stuart | Raymond Harris | Raf Van de Plas | Sarah A. Teichmann | Alexander Ropelewski | Paul D. Piehowski | Gökcen Eraslan | Kristin E. Burnum-Johnson | Nathan Heath Patterson | Sarah Black | Mark Atkinson | Chuck McCallum | Peter Chou | Tommaso Biancalani | Elizabeth L. Wilder | Richard Conroy | Nils Gehlenborg | Michael Clare-Salzler | Margaret Vella | Vishal Gautham Venkataraaman | James Anderson | James S. Hagood | Ruben Dries | William Shirey | Bruce William Herr | Shin Lin | Amanda Posgai | Jennifer Rood | Leslie Gaffney | Anna Hupalowska | Julia Laskin | Pehr Harbury | Kun Zhang | Yiing Lin | Dena Procaccini | Ananda L. Roy | Ajay Pillai | Marishka Brown | Zorina S. Galis | Long Cai | Dana Jackson | William James Greenleaf | Sara Ahadi | Stephanie A. Nevins | Christian Martijn Schuerch | Aaron Horning | Xin Sun | Sanjay Jain | Gloria Pryhuber | Todd Brusko | Harry Nick | Clive Wasserfall | Marda Jorgensen | Maigan Brusko | Richard M. Caprioli | Danielle Gutierrez | Elizabeth K. Neumann | Mark deCaestecker | Qian Zhu | Sinem K. Saka | Isabel Goldaracena | DongHye Ye | Charles Ansong | Tushar Desai | Jay Mulye | Monica Nagendran | Jian Ma | Vladimir Yu. Kiselev | Allyson Ricarte | Maria Keays | Lisel Record | Robin M. Scibek | Stavros Michailidis | Eeshit D. Vaishnav | Pothur Srinivas | Aaron Pawlyk | Salvatore Sechi | Elizabeth L. Wilder | G. Nolan | A. Regev | J. Shendure | K. Robasky | S. Teichmann | Z. Bar-Joseph | J. Marioni | S. Plevritis | Shin Lin | P. Yin | Guocheng Yuan | B. Paten | P. Kharchenko | R. Caprioli | S. Maffioletti | O. Rozenblatt-Rosen | R. Satija | M. Snyder | K. Börner | N. Gehlenborg | G. Weber | R. Murphy | Andrew Butler | Yiing Lin | R. Heiland | K. Otto | W. Greenleaf | W. Lenhardt | P. Harbury | L. Cai | V. Kiselev | T. Desai | A. Hupalowska | Qian Zhu | Ruben Dries | M. Keays | Tim Stuart | Dana L. Jackson | Sarah Black | Gökçen Eraslan | M. Atkinson | Dena Procaccini | Chuck McCallum | S. Sechi | P. Piehowski | P. Macklin | E. D. Vaishnav | Z. Galis | C. Ansong | P. Srinivas | J. Hagood | G. Pryhuber | H. Nick | R. Conroy | J. Silverstein | Carl Kingsford | K. Burnum-Johnson | A. Fogo | S. Ahadi | C. Wasserfall | C. Schuerch | T. Biancalani | S. Ghazanfar | E. Quardokus | J. Laskin | A. Posgai | T. Brusko | Monica Nagendran | A. Pawlyk | Matthew Ruffalo | Hayan Lee | E. Esplin | M. Clare-Salzler | Stephanie A. Nevins | N. H. Patterson | R. V. D. Plas | Eyal Fisher | L. Gaffney | Aaron M. Horning | Jennifer E. Rood | Ajay Pillai | Marda L. Jorgensen | Maigan A. Brusko | Kun Zhang | A. Ropelewski | C. Trapnell | Marishka Brown | M. deCaestecker | Ken Lau | Ananda L. Roy | Raymond C. Harris | Xin Sun | B. Herr | Margaret Vella | K. Burnum‐Johnson | J. Sluka | DongHye Ye | Yu Wang | I. Goldaracena | William Shirey | Guo-cheng Yuan | B. Bodenmiller | S. Jain | J. Spraggins | V. Venkataraaman | Amir Bahmani | Ying Zhu | J. Mulye | Peter Chou | Jian Ma | Allyson Ricarte | Lisel Record | Stavros Michailidis | James Anderson | Guocheng Yuan | Tommaso Biancalani

[1]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[2]  Dmitri D. Pervouchine,et al.  A benchmark for RNA-seq quantification pipelines , 2016, Genome Biology.

[3]  Mary Goldman,et al.  Toil enables reproducible, open source, big biomedical data analyses , 2017, Nature Biotechnology.

[4]  Eric P Skaar,et al.  Next‐generation technologies for spatial proteomics: Integrating ultra‐high speed MALDI‐TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis , 2016, Proteomics.

[5]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[6]  L. Cai,et al.  In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus , 2016, Neuron.

[7]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[8]  Salil S. Bhate,et al.  Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging , 2017, Cell.

[9]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[10]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  Benedict Paten,et al.  The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows , 2017, F1000Research.

[12]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[13]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[14]  Interactive human protein atlas launches. , 2015, Cancer discovery.

[15]  Mark D. Robinson,et al.  Compensation of Signal Spillover in Suspension and Imaging Mass Cytometry , 2018, Cell systems.

[16]  Alfons Buekens,et al.  Book Review: Assessment of the Performance of Engineered Waste Containment Barriers by National Research Council of the National Academies , 2010 .

[17]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[18]  Karl Deisseroth,et al.  An interactive framework for whole-brain maps at cellular resolution , 2017, Nature Neuroscience.

[19]  Guocheng Yuan,et al.  Identification of spatially associated subpopulations by combining scRNA-seq and sequential fluorescence in situ hybridization data , 2018, Nature Biotechnology.

[20]  J. Michael Cherry,et al.  Principles of metadata organization at the ENCODE data coordination center , 2016, Database J. Biol. Databases Curation.

[21]  Yu Wang,et al.  Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues , 2019, Nature Biotechnology.

[22]  Richard M. Caprioli,et al.  Fusion of mass spectrometry and microscopy: a multi-modality paradigm for molecular tissue mapping , 2015, Nature Methods.

[23]  Richard M Caprioli,et al.  Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. , 2013, Chemical reviews.

[24]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[25]  Sarah A. Teichmann,et al.  Faculty Opinions recommendation of histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. , 2017 .

[26]  Tiffany Philips,et al.  Factors That Influence the Quality of RNA From the Pancreas of Organ Donors , 2017, Pancreas.

[27]  Peng Yin,et al.  SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues , 2018, bioRxiv.

[28]  Marco Laumanns,et al.  CellCycleTRACER accounts for cell cycle and volume in mass cytometry data , 2018, Nature Communications.

[29]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[30]  Nuno A. Fonseca,et al.  Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants , 2015, Nucleic Acids Res..

[31]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[32]  A. Tanay,et al.  Single-cell epigenomics: techniques and emerging applications , 2015, Nature Reviews Genetics.

[33]  Richard M Caprioli,et al.  Next Generation Histology-Directed Imaging Mass Spectrometry Driven by Autofluorescence Microscopy. , 2018, Analytical chemistry.

[34]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[35]  Ronald J. Moore,et al.  Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells , 2018, Nature Communications.

[36]  Peng Yin,et al.  SABER enables amplified and multiplexed imaging of RNA and DNA in cells and tissues , 2019, Nature Methods.

[37]  George M. Church,et al.  Highly multiplexed in situ protein imaging with signal amplification by Immuno-SABER , 2018, bioRxiv.

[38]  Julia Laskin,et al.  High Spatial Resolution Imaging of Mouse Pancreatic Islets Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. , 2018, Analytical chemistry.

[39]  Alistair A. Young,et al.  The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart , 2011, Bioinform..

[40]  Long Cai,et al.  seqFISH Accurately Detects Transcripts in Single Cells and Reveals Robust Spatial Organization in the Hippocampus , 2017, Neuron.

[41]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[42]  Clive Wasserfall,et al.  The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes (nPOD) Program: goals, operational model and emerging findings , 2013, Pediatric diabetes.

[43]  Valentine Svensson,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016, Nature Methods.

[44]  Michael B. Stadler,et al.  An Immune Atlas of Clear Cell Renal Cell Carcinoma , 2017, Cell.

[45]  M. Atkinson,et al.  Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes , 2012, Diabetes/metabolism research and reviews.

[46]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[47]  P. Harbury,et al.  Ultrasensitive optical imaging with lanthanide lumiphores , 2017, Nature chemical biology.

[48]  Bernd Bodenmiller,et al.  miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data , 2017, Nature Methods.

[49]  Xintao Wei,et al.  Erratum: A benchmark for RNA-seq quantification pipelines [Genome Biol. (2016), 17, 74], DOI: 10.1186/s13059-016-0940-1 , 2016 .

[50]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[51]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[52]  Bernd Bodenmiller,et al.  Simultaneous Multiplexed Imaging of mRNA and Proteins with Subcellular Resolution in Breast Cancer Tissue Samples by Mass Cytometry , 2017, Cell systems.

[53]  William S. DeWitt,et al.  A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility , 2018, Cell.