Convergence of Generalized MUSCL Schemes

[1]  H. C. Yee,et al.  Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. [in gas dynamics , 1985 .

[2]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[3]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[4]  M. J. Baines,et al.  On convergence of Roe's scheme for the general non-linear scalar wave equation , 1984 .

[5]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[6]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[7]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[8]  W. A. Mulder,et al.  Implicit upwind methods for the Euler equations , 1983 .

[9]  H. C. Yee,et al.  Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. [in gas dynamics , 1983 .

[10]  S. Osher,et al.  High resolution applications of the Osher upwind scheme for the Euler equations , 1983 .

[11]  R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .

[12]  S. Osher,et al.  Stable and entropy satisfying approximations for transonic flow calculations , 1980 .

[13]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[14]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[15]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[16]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[17]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .