Analytical tolerancing of segmented telescope co-phasing for exo-Earth high-contrast imaging

Abstract. This paper introduces an analytical method to calculate segment-level wavefront error (WFE) tolerances to enable the detection of faint extra-solar planets using segmented-aperture telescopes in space. This study provides a full treatment of the case of spatially uncorrelated segment phasing errors for segmented telescope coronagraphy, which has so far only been approached using ad-hoc Monte Carlo (MC) simulations. Instead of describing the wavefront tolerance globally for all segments, our method produces spatially dependent requirement maps. We relate the statistical mean contrast in the coronagraph dark hole to the standard deviation of the WFE of each individual segment on the primary mirror. This statistical framework for segment-level tolerancing extends the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS), which is based uniquely on a matrix multiplication for the optical propagation. We confirm our analytical results with MC simulations of end-to-end optical propagations through a coronagraph. Comparing our results for the Apodized Pupil Lyot Coronagraph designs for the Large Ultraviolet Optical Infrared telescope to previous studies, we show general agreement but we provide a relaxation of the requirements for a significant subset of segments in the pupil. These requirement maps are unique to any given telescope geometry and coronagraph design. The spatially uncorrelated segment tolerances we calculate are a key element of a complete error budget that will also need to include allocations for correlated segment contributions. We discuss how the PASTIS formalism can be extended to the spatially correlated case by deriving the statistical mean contrast and its variance for a non-diagonal aberration covariance matrix. The PASTIS tolerancing framework therefore brings a new capability that is necessary for the global tolerancing of future segmented space observatories.

[1]  Pierre Baudoz,et al.  EPICS: the exoplanet imager for the E-ELT , 2008, Astronomical Telescopes + Instrumentation.

[2]  Thomas A Caswell,et al.  matplotlib/matplotlib: REL: v3.3.3 , 2020 .

[3]  R. Soummer,et al.  Exploiting symmetries and progressive refinement for apodized pupil Lyot coronagraph design , 2020, Astronomical Telescopes + Instrumentation.

[4]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[5]  The LUVOIR Team,et al.  The LUVOIR Mission Concept Study Final Report. , 2019, 1912.06219.

[6]  G. Ruane,et al.  The LUVOIR architecture "A" coronagraph instrument , 2017, Optical Engineering + Applications.

[7]  David Mouillet,et al.  Simultaneous exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging , 2013, 1302.7045.

[8]  Rafael Millan-Gabet,et al.  Overview and status of the Giant Magellan Telescope project , 2018, Astronomical Telescopes + Instrumentation.

[9]  H. Philip Stahl Advanced mirror technology development (AMTD): year five status , 2017, Optical Engineering + Applications.

[10]  Laurent Pueyo,et al.  Wavefront error tolerancing for direct imaging of exo-Earths with a large segmented telescope in space , 2019, Optical Engineering + Applications.

[11]  Paul A. Lightsey,et al.  Image quality for large segmented space telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[12]  Mamadou N'Diaye,et al.  Review of high-contrast imaging systems for current and future ground-based and space-based telescopes: Part II. Common path wavefront sensing/control and coherent differential imaging , 2018, Astronomical Telescopes + Instrumentation.

[13]  Marshall D. Perrin,et al.  Updated optical modeling of JWST coronagraph performance contrast, stability, and strategies , 2018, Astronomical Telescopes + Instrumentation.

[14]  Matthew V. Radovan,et al.  Thirty Meter Telescope science instruments: a status report , 2016, Astronomical Telescopes + Instrumentation.

[15]  Matthew R. Bolcar The Large UV/Optical/Infrared (LUVOIR) surveyor: engineering design and technology overview , 2019, Optical Engineering + Applications.

[16]  David C. Redding,et al.  James Webb Space Telescope wavefront sensing and control algorithms , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  H. Philip Stahl,et al.  Preliminary analysis of effect of random segment errors on coronagraph performance , 2015, SPIE Optical Engineering + Applications.

[18]  Aki Roberge,et al.  Telling the story of life in the cosmos: the LUVOIR telescope concepts , 2019, Optical Engineering + Applications.

[19]  D. Mawet,et al.  RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS , 2013, 1309.3328.

[20]  J. Scott Knight,et al.  Edge sensor concept for segment stabilization , 2018, Astronomical Telescopes + Instrumentation.

[21]  K. Dohlen,et al.  Analytical study of diffraction effects in extremely large segmented telescopes. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Brian Kern,et al.  Methods and limitations of focal plane sensing, estimation, and control in high-contrast imaging , 2015 .

[23]  Laurent M. Mugnier,et al.  Predicting contrast sensitivity to segmented aperture misalignment modes for the HiCAT testbed , 2020, Astronomical Telescopes + Instrumentation.

[24]  Bertrand Koehler,et al.  The ESO Extremely Large Telescope instrumentation programme , 2020, Micro + Nano Materials, Devices, and Applications.

[25]  M. Clampin,et al.  Space telescope sensitivity and controls for exoplanet imaging , 2012 .

[26]  Dimitri Mawet,et al.  Performance and sensitivity of vortex coronagraphs on segmented space telescopes , 2017, Optical Engineering + Applications.

[27]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[28]  K. Dohlen,et al.  Tip-tilt error for extremely large segmented telescopes: detailed theoretical point-spread-function analysis and numerical simulation results. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Pascal Hallibert,et al.  Technologies for large ultra-stable optical missions: current perspectives and developments at ESA , 2019, Optical Engineering + Applications.

[30]  M. McElwain,et al.  LOWER LIMITS ON APERTURE SIZE FOR AN EXOEARTH DETECTING CORONAGRAPHIC MISSION , 2015, 1506.01723.

[31]  Terry S. Mast,et al.  Effects Of Primary Mirror Segmentation On Telescope Image Quality , 1982, Astronomical Telescopes and Instrumentation.

[32]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[33]  Mamadou N'Diaye,et al.  Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. II. Optimization for Future Missions , 2017 .

[34]  L. Pueyo,et al.  Optimal dark hole generation via two deformable mirrors with stroke minimization. , 2009, Applied optics.

[35]  Thierry Fusco,et al.  Pair-based Analytical model for Segmented Telescopes Imaging from Space for sensitivity analysis , 2018, Journal of Astronomical Telescopes, Instruments, and Systems.

[36]  H. Philip Stahl,et al.  Method for deriving optical telescope performance specifications for Earth-detecting coronagraphs , 2020 .

[37]  T. Fusco,et al.  Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes , 2008 .

[38]  W. Keith Belvin,et al.  In-space assembly application and technology for NASA's future science observatory and platform missions , 2018, Astronomical Telescopes + Instrumentation.

[39]  H. Philip Stahl,et al.  The effects of space telescope primary mirror segment errors on coronagraph instrument performance , 2017, Optical Engineering + Applications.

[40]  H. Shibai,et al.  Point spread function of hexagonally segmented telescopes by new symmetrical formulation , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  Matthew East,et al.  Ultrastable mirror assembly design (Conference Presentation) , 2019 .

[42]  Olivier Guyon,et al.  The Habitable Exoplanet Observatory mission concept , 2020, Astronomical Telescopes + Instrumentation.

[43]  M. Troy,et al.  Rolled edges and phasing of segmented telescopes. , 2011, Applied optics.

[44]  Gary Chanan,et al.  Diffraction effects from giant segmented mirror telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[45]  B. Lyot The study of the solar corona and prominences without eclipses (George Darwin Lecture, 1939) , 1939 .

[46]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[47]  Mamadou N'Diaye,et al.  Sensitivity analysis for high-contrast imaging with segmented space telescopes , 2018, Astronomical Telescopes + Instrumentation.

[48]  Matthew R. Bolcar,et al.  The LUVOIR Extreme Coronagraph for Living Planetary Systems (ECLIPS) II. Performance evaluation, aberration sensitivity analysis and exoplanet detection simulations , 2019, Optical Engineering + Applications.

[49]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[50]  Howard A. MacEwen,et al.  Servicing and assembly: enabling the most ambitious future space observatories , 2018, Astronomical Telescopes + Instrumentation.

[51]  C. Aime,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. II. THEORETICAL PROPERTIES AND APPLICATION TO EXTREMELY LARGE TELESCOPES , 2009 .

[52]  Lee Feinberg,et al.  Ultra-stable segmented telescope sensing and control architecture , 2017, Optical Engineering + Applications.

[53]  Mamadou N'Diaye,et al.  Sensitivity analysis for high-contrast missions with segmented telescopes , 2017, Optical Engineering + Applications.

[54]  J. P. Laboratory,et al.  High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.

[55]  David C. Redding,et al.  Picometer differential wavefront metrology by nonlinear Zernike wavefront sensing for LUVOIR , 2018, Astronomical Telescopes + Instrumentation.

[56]  N. Jeremy Kasdin,et al.  Dark Hole Maintenance and A Posteriori Intensity Estimation in the Presence of Speckle Drift in a High-contrast Space Coronagraph , 2019, The Astrophysical Journal.

[57]  Natalia Yaitskova,et al.  Lyot Coronagraphy on Giant Segmented-Mirror Telescopes , 2005 .

[58]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. IV. REDUCED INNER WORKING ANGLE AND INCREASED ROBUSTNESS TO LOW-ORDER ABERRATIONS , 2014, 1412.2751.

[59]  Mitchell Troy,et al.  Segment aberration effects on contrast. , 2007, Applied optics.

[60]  R. Harrington Part II , 2004 .

[61]  E. Cady,et al.  HIGH PERFORMANCE LYOT AND PIAA CORONAGRAPHY FOR ARBITRARILY SHAPED TELESCOPE APERTURES , 2013, 1305.6686.

[62]  J. Scott Knight,et al.  Wavefront sensing and controls for the James Webb Space Telescope , 2012, Other Conferences.

[63]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[64]  E. Por Phase-apodized-pupil Lyot Coronagraphs for Arbitrary Telescope Pupils , 2019, The Astrophysical Journal.

[65]  Robert J. Vanderbei,et al.  Lyot coronagraph design study for large, segmented space telescope apertures , 2016, Astronomical Telescopes + Instrumentation.

[66]  Mamadou N'Diaye,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. V. HYBRID SHAPED PUPIL DESIGNS FOR IMAGING EARTH-LIKE PLANETS WITH FUTURE SPACE OBSERVATORIES , 2016, 1601.02614.

[67]  N. Jeremy Kasdin,et al.  WFIRST coronagraph technology requirements: status update and systems engineering approach , 2018, Astronomical Telescopes + Instrumentation.

[68]  John E. Krist,et al.  An overview of WFIRST/AFTA coronagraph optical modeling , 2015, SPIE Optical Engineering + Applications.

[69]  Dmitry Savransky,et al.  WFIRST-AFTA coronagraph science yield modeling with EXOSIMS , 2015, 1511.02869.

[70]  David S. Doelman,et al.  High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator , 2018, Astronomical Telescopes + Instrumentation.

[71]  C. Aime,et al.  Stellar coronagraphy with prolate apodized circular apertures , 2003 .

[72]  John E. Krist,et al.  Sensitivity of the WFIRST coronagraph performance to key instrument parameters , 2017, Optical Engineering + Applications.

[73]  Bertrand Mennesson,et al.  ExoEarth yield landscape for future direct imaging space telescopes , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[74]  Aki Roberge,et al.  The LUVOIR Extreme Coronagraph for Living Planetary Systems (ECLIPS) I: searching and characterizing exoplanetary gems , 2019, Optical Engineering + Applications.

[75]  Frantz Martinache,et al.  How ELTs will acquire the first spectra of rocky habitable planets , 2012, Other Conferences.

[76]  David Redding,et al.  Picometer level stability of a mounted mirror assembly , 2018, Astronomical Telescopes + Instrumentation.

[77]  Matthew R. Bolcar,et al.  Large ultra-stable telescope system study , 2019, Optical Engineering + Applications.

[78]  R. Soummer,et al.  Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm , 2017 .

[79]  Matthew East,et al.  Mirror segment sensitivity analysis and performance budgets for LUVOIR ULTRA (Conference Presentation) , 2019 .