Design of good low-density parity-check codes for block fading channels

The paper focuses on the design of good irregular low density parity check (LDPC) codes for Rayleigh block fading channels using a strategy of joint channel estimation and LDPC decoding. It is assumed that the amplitude of the fading coefficient is unknown. A density evolution technique employing a semi-Gaussian approximation is used to find good degree sequences for irregular LDPC codes for channels with different block memory sizes. The capacity of the BPSK-modulated Rayleigh block fading channel with unknown fading amplitude is used as a benchmark. For a block fading channel with a memory size of 20 bits, the best irregular LDPC code found has a threshold that is 0.47 dB away from the channel capacity.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Wayne E. Stark,et al.  Channels with block interference , 1984, IEEE Trans. Inf. Theory.

[3]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[6]  Daniel A. Spielman,et al.  Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.

[7]  M. Luby,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[8]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[9]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[10]  G.D. Forney,et al.  Codes on graphs: Normal realizations , 2000, IEEE Trans. Inf. Theory.

[11]  Paul H. Siegel,et al.  Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels , 2001, IEEE J. Sel. Areas Commun..

[12]  Wayne E. Stark,et al.  Unified design of iterative receivers using factor graphs , 2001, IEEE Trans. Inf. Theory.

[13]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[14]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[15]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[16]  Andrew W. Eckford,et al.  Analysis of LDPC decoding for correlated and uncorrelated block fading channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Frank R. Kschischang,et al.  Designing good LDPC codes for markov-modulated channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  Andrew W. Eckford,et al.  Analysis of Joint Channel Estimation and LDPC Decoding on Block Fading Channels , 2004 .

[19]  Masoud Ardakani,et al.  A more accurate one-dimensional analysis and design of irregular LDPC codes , 2004, IEEE Transactions on Communications.