Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase

[1]  Marcin Gradowski,et al.  Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases , 2019, Science.

[2]  Lei Song,et al.  Post-translational regulation of ubiquitin signaling , 2019, The Journal of cell biology.

[3]  P. Hollenbeck,et al.  Legionella pneumophila inhibits immune signaling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N , 2018, Nature Microbiology.

[4]  Donghyuk Shin,et al.  Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination , 2018, Nature.

[5]  D. Hall,et al.  Glutamylation Regulates Transport, Specializes Function, and Sculpts the Structure of Cilia , 2017, Current Biology.

[6]  K. Orth,et al.  Enzymes Involved in AMPylation and deAMPylation. , 2017, Chemical reviews.

[7]  Zhao‐Qing Luo,et al.  Legionella and Coxiella effectors: strength in diversity and activity , 2017, Nature Reviews Microbiology.

[8]  Yi-Han Lin,et al.  Exploitation of the host cell ubiquitin machinery by microbial effector proteins , 2017, Journal of Cell Science.

[9]  P. Piehowski,et al.  A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination , 2017, Cell Research.

[10]  R. Isberg,et al.  A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. , 2017, Cell host & microbe.

[11]  I. Matic,et al.  Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination , 2016, Cell.

[12]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[13]  Zhao‐Qing Luo,et al.  Ubiquitination independent of E1 and E2 enzymes by bacterial effectors , 2016, Nature.

[14]  C. Das,et al.  Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination , 2015, Proceedings of the National Academy of Sciences.

[15]  J. Sexton,et al.  Spatiotemporal Regulation of a Legionella pneumophila T4SS Substrate by the Metaeffector SidJ , 2015, PLoS pathogens.

[16]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[17]  J. Gancedo Biological roles of cAMP: variations on a theme in the different kingdoms of life , 2013, Biological reviews of the Cambridge Philosophical Society.

[18]  Eunok Paek,et al.  Fast Multi-blind Modification Search through Tandem Mass Spectrometry* , 2011, Molecular & Cellular Proteomics.

[19]  M. Swanson,et al.  Inhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector , 2010, PLoS pathogens.

[20]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[21]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[22]  Liisa Holm,et al.  The Pfam protein families database , 2009, Nucleic acids research.

[23]  M. Heidtman,et al.  Large‐scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways , 2009, Cellular microbiology.

[24]  Navdeep Jaitly,et al.  DeconMSn: a software tool for accurate parent ion monoisotopic mass determination for tandem mass spectra , 2008, Bioinform..

[25]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[26]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[27]  Yancheng Liu,et al.  The Legionella pneumophila Effector SidJ Is Required for Efficient Recruitment of Endoplasmic Reticulum Proteins to the Bacterial Phagosome , 2006, Infection and Immunity.

[28]  J. Bader,et al.  RNA Interference Analysis of Legionella in Drosophila Cells: Exploitation of Early Secretory Apparatus Dynamics , 2006, PLoS pathogens.

[29]  Filip Van Petegem,et al.  Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex , 2005, Nature Structural &Molecular Biology.

[30]  Qing Guo,et al.  Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin , 2005, The EMBO journal.

[31]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[32]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[33]  Zhao-Qing Luo,et al.  Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Bohm,et al.  Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin , 2002, Nature.

[35]  S. Farrand,et al.  Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Rhoads,et al.  Sequence motifs for calmodulin recognition , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  R. Müller,et al.  Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. , 1995, Gene.

[38]  R. Isberg,et al.  Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila , 1993, Molecular microbiology.

[39]  J. Rossier,et al.  Posttranslational glutamylation of alpha-tubulin. , 1990, Science.

[40]  Clive R. Bagshaw ATP analogues at a glance. , 2001, Journal of cell science.

[41]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.