Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome

Quantitative measurement of the number of Cse4, CBF3, and Ndc80 proteins at kinetochores reveals a 2.5–3-fold increased copy number relative to prior estimates.

[1]  K. Bloom,et al.  Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes , 1982, Cell.

[2]  D N Mastronarde,et al.  Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle , 1995, The Journal of cell biology.

[3]  E. Salmon,et al.  Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae , 1995, The Journal of cell biology.

[4]  S. Kain,et al.  Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. , 1996, Nucleic acids research.

[5]  G. Patterson,et al.  Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. , 1997, Biophysical journal.

[6]  D. Koshland,et al.  Cse4p Is a Component of the Core Centromere of Saccharomyces cerevisiae , 1998, Cell.

[7]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[8]  A S Belmont,et al.  In vivo visualization of chromosomes using lac operator-repressor binding. , 1998, Trends in cell biology.

[9]  Kerry Bloom,et al.  Budding Yeast Chromosome Structure and Dynamics during Mitosis , 2001, The Journal of cell biology.

[10]  E. Salmon,et al.  Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. , 2001, Molecular biology of the cell.

[11]  Jean Cohen,et al.  Individual Rotavirus-like Particles Containing 120 Molecules of Fluorescent Protein Are Visible in Living Cells* 210 , 2001, The Journal of Biological Chemistry.

[12]  T. Misteli,et al.  Quantitation of GFP-fusion proteins in single living cells. , 2002, Journal of structural biology.

[13]  E. Salmon,et al.  Spinning disk confocal microscope system for rapid high-resolution, multimode, fluorescence speckle microscopy and green fluorescent protein imaging in living cells. , 2003, Methods in enzymology.

[14]  P. Sorger,et al.  Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. , 2003, Molecular biology of the cell.

[15]  E. Salmon,et al.  Stable Kinetochore-Microtubule Attachment Constrains Centromere Positioning in Metaphase , 2004, Current Biology.

[16]  K. Sobue,et al.  Determination of absolute protein numbers in single synapses by a GFP-based calibration technique , 2005, Nature Methods.

[17]  Michael J. Emanuele,et al.  Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore. , 2005, Molecular biology of the cell.

[18]  A. Desai,et al.  The Conserved KMN Network Constitutes the Core Microtubule-Binding Site of the Kinetochore , 2006, Cell.

[19]  G. Wadhams,et al.  Stoichiometry and turnover in single, functioning membrane protein complexes , 2006, Nature.

[20]  M. Jayaram,et al.  The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-μm circle partitioning locus and promotes equal plasmid segregation , 2006, The Journal of cell biology.

[21]  E. Salmon,et al.  Molecular architecture of a kinetochore–microtubule attachment site , 2006, Nature Cell Biology.

[22]  Karl Mechtler,et al.  Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I , 2006, Nature.

[23]  S. Biggins,et al.  Centromere identity is specified by a single centromeric nucleosome in budding yeast , 2007, Proceedings of the National Academy of Sciences.

[24]  M. Washburn,et al.  Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. , 2007, Molecular cell.

[25]  Richard E. Baker,et al.  Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization , 2007, Proceedings of the National Academy of Sciences.

[26]  G. Mizuguchi,et al.  Nonhistone Scm3 and Histones CenH3-H4 Assemble the Core of Centromere-Specific Nucleosomes , 2007, Cell.

[27]  Jessica K. Polka,et al.  Implications for Kinetochore-Microtubule Attachment from the Structure of an Engineered Ndc80 Complex , 2008, Cell.

[28]  Judith Berman,et al.  Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres , 2008, The Journal of cell biology.

[29]  Jesse C. Gatlin,et al.  Condensin regulates the stiffness of vertebrate centromeres. , 2009, Molecular biology of the cell.

[30]  William A. Richardson,et al.  Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin , 2009, Molecular cell.

[31]  S. Henikoff,et al.  Centromeric Nucleosomes Induce Positive DNA Supercoils , 2009, Cell.

[32]  Andrew D. Franck,et al.  The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion , 2009, Cell.

[33]  P. Russell,et al.  Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. , 2009, Molecular cell.

[34]  Kerry Bloom,et al.  In Vivo Protein Architecture of the Eukaryotic Kinetochore with Nanometer Scale Accuracy , 2009, Current Biology.

[35]  A. Musacchio,et al.  The life and miracles of kinetochores , 2009, The EMBO journal.

[36]  E. Salmon,et al.  Mechanisms of force generation by end-on kinetochore-microtubule attachments. , 2010, Current opinion in cell biology.

[37]  E. Salmon,et al.  Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal , 2010, Journal of Cell Science.

[38]  E. Nogales,et al.  The Ndc80 kinetochore complex forms oligomeric arrays along microtubules , 2010, Nature.

[39]  C. Lehner,et al.  Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1 , 2010, Journal of Cell Science.

[40]  E. Salmon,et al.  Vertebrate kinetochore protein architecture: protein copy number , 2010, The Journal of cell biology.

[41]  M. Singleton,et al.  Biophysical Characterization of the Centromere-specific Nucleosome from Budding Yeast* , 2010, The Journal of Biological Chemistry.

[42]  Recognition of the centromere-specific histone Cse4 by the chaperone Scm3 , 2011, Proceedings of the National Academy of Sciences.

[43]  G. Barton,et al.  The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4 , 2011, The EMBO journal.

[44]  Silvia Polakova,et al.  Merotelic kinetochore attachment: causes and effects , 2011, Trends in cell biology.

[45]  Kerry Bloom,et al.  Centromeres: unique chromatin structures that drive chromosome segregation , 2011, Nature Reviews Molecular Cell Biology.

[46]  Michelle D. Wang,et al.  Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes , 2011, Nature communications.