The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A

Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the Submillimetre Common-User Bolometer Array (SCUBA-2) shared-risk observations at 450 and 850 μm of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the Heterodyne Array Receiver Programme 12CO J = 3−2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index α map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high 12CO J = 3−2 line contamination, to 27 previously identified clumps in OMC 4. This allows us to quantify the effect of line contamination on the ratio of 850–450 μm flux densities and how it modifies the deduced spectral index of emissivity β for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC 5 has a 12CO J = 3−2 contamination level of 16 per cent. Furthermore, we find the strongest contamination level (44 per cent) towards a young star with disc near OMC 2. This work is part of the JCMT Gould Belt Legacy Survey.

[1]  D. Johnstone,et al.  The JCMT Gould Belt Survey : properties of star-forming filaments in Orion A North , 2015 .

[2]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: evidence for radiative heating in Serpens MWC 297 and its influence on local star formation , 2014, 1412.5965.

[3]  J. Francesco,et al.  Evidence for large grains in the star-forming filament OMC 2/3 , 2014, 1408.5429.

[4]  C. A. Oxborrow,et al.  Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data , 2014, 1406.5093.

[5]  M. Lombardi,et al.  Herschel-Planck dust optical-depth and column-density maps - I. Method description and results for Orion , 2014, 1404.0032.

[6]  H. Rix,et al.  A LARGE CATALOG OF ACCURATE DISTANCES TO MOLECULAR CLOUDS FROM PS1 PHOTOMETRY , 2014, 1403.3393.

[7]  A. Bolatto,et al.  Formation of Molecular Clouds and Global Conditions for Star Formation , 2013, 1312.3223.

[8]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[9]  M. Juvela,et al.  The degeneracy between dust colour temperature and spectral index - Comparison of methods for estimating the β(T) relation , 2013, 1305.2130.

[10]  M. Baes,et al.  Three-Dimensional Dust Radiative Transfer ∗ , 2013, 1303.4998.

[11]  A. Duarte-Cabral,et al.  THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2 , 2013, 1303.1529.

[12]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[13]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[14]  J. Richer,et al.  The JCMT Gould Belt Survey: SCUBA-2 observations of radiative feedback in NGC 1333 , 2012, 1210.5094.

[15]  K. Flaherty,et al.  THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. I. A CENSUS OF DUSTY YOUNG STELLAR OBJECTS AND A STUDY OF THEIR MID-INFRARED VARIABILITY , 2012, 1209.3826.

[16]  D. Johnstone,et al.  Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data , 2012, 1204.6180.

[17]  A. Goodman,et al.  DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE , 2012, 1203.0025.

[18]  Peter G. Martin,et al.  Evolution of dust in the Orion Bar with Herschel , 2012, 1202.1624.

[19]  D. Ward-Thompson,et al.  The JCMT Legacy Survey of the Gould Belt: mapping 13CO and C18O in Orion A , 2012, 1201.5483.

[20]  K. Menten,et al.  The APEX-CHAMP+ view of the Orion Molecular Cloud 1 core - Constraining the excitation with submillimeter CO multi-line observations , 2011, 1112.1009.

[21]  R. B. Barreiro,et al.  Planck early results. XXIII. The first all-sky survey of Galactic cold clumps , 2011 .

[22]  P. Bastien,et al.  MAGNETIC FIELD STRUCTURES AND TURBULENT COMPONENTS IN THE STAR-FORMING MOLECULAR CLOUDS OMC-2 AND OMC-3 , 2010, 1003.5596.

[23]  J. Foster,et al.  THE DUST EMISSIVITY SPECTRAL INDEX IN THE STARLESS CORE TMC-1C , 2009, 0911.0892.

[24]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[25]  P. Ade,et al.  90 GHz AND 150 GHz OBSERVATIONS OF THE ORION M42 REGION. A SUBMILLIMETER TO RADIO ANALYSIS , 2009, 0907.1300.

[26]  A. Goodman,et al.  THE EFFECT OF LINE-OF-SIGHT TEMPERATURE VARIATION AND NOISE ON DUST CONTINUUM OBSERVATIONS , 2009, 0902.3477.

[27]  A. Goodman,et al.  THE EFFECT OF NOISE ON THE DUST TEMPERATURE–SPECTRAL INDEX CORRELATION , 2009, 0902.0636.

[28]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[29]  Elizabeth Ledwosinska,et al.  The SCUBA Legacy Catalogues: Submillimeter-Continuum Objects Detected by SCUBA , 2008, 0801.2595.

[30]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[31]  G. Fuller,et al.  Star formation in Perseus III. Outflows , 2007, 0706.1724.

[32]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[33]  J. Rawlings,et al.  Modeling the Physical Structure of the Low-Density Pre-Protostellar Core Lynds 1498 , 2005, astro-ph/0505171.

[34]  J. Lequeux The Interstellar Medium , 2004 .

[35]  D. Johnstone,et al.  Astrochemistry of sub-millimeter sources in Orion. Studying the variations of molecular tracers with changing physical conditions , 2003, astro-ph/0310166.

[36]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[37]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[38]  D. Lis,et al.  A Line Survey of Orion-KL from 607 to 725 GHz , 2001 .

[39]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[40]  E. Serabyn,et al.  350 Micron Continuum Imaging of the Orion A Molecular Cloud with the Submillimeter High Angular Resolution Camera , 1998 .

[41]  P. Ho,et al.  Large-Scale Structure, Kinematics, and Heating of the Orion Ridge. I. VLA NH3 (1, 1) and (2, 2) Multifield Mosaics , 1998 .

[42]  E. Bergin,et al.  Carbon Monoxide and Dust Column Densities: The Dust-to-Gas Ratio and Structure of Three Giant Molecular Cloud Cores , 1997 .

[43]  E. Serabyn,et al.  Fourier Transform Spectroscopy of the Orion Molecular Cloud Core , 1995 .

[44]  S. Reynolds Continuum spectra of collimated, ionized stellar winds , 1986 .

[45]  K. J. Donner,et al.  The Interstellar Medium , 2020, Foundations of Astrophysics.

[46]  P. Mezger,et al.  Galactic H II Regions. I. Observations of Their Continuum Radiation at the Frequency 5 GHz , 1967 .

[47]  L. Oster Emission, Absorption, and Conductivity of a Fully Ionized Gas at Radio Frequencies , 1961 .

[48]  T. Jenness,et al.  The SCUBA-2 SRO data reduction cookbook , 2010 .

[49]  Astronomy Astrophysics , 2003 .

[50]  J. Bally,et al.  JCMT/SCUBA Submillimeter Wavelength Imaging of the Integral-shaped Filament in Orion , 1998 .

[51]  D. Egret,et al.  The simbad astronomical database , 1991 .