Spatio-temporal traffic video data archiving and retrieval system

This paper presents a transportation spatio-temporal system that efficiently converts traffic video data into vehicular motion information in spatio-temporal databases for a variety of transportation applications. The proposed transportation spatio-temporal system interpolates the vehicle trajectory data (i.e., time, location, and speed), which are extracted from video, and integrates them with spatial road information for storage of dynamic transportation environments. The proposed transportation spatio-temporal system can mitigate data storage and retrieval issues related to storing large amounts of traffic video. Moreover, users can manage and operate multiform and multidimensional traffic data in a spatio-temporal transportation environment. The proposed approach is demonstrated for typical transportation applications. The experimental results show that the proposed transportation spatio-temporal system has excellent potential for addressing issues related to storage of large amounts of traffic video data.

[1]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[2]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[3]  Pritam Ranjan,et al.  A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data , 2010, Technometrics.

[4]  Haitham Al-Deek,et al.  AN EVALUATION PLAN FOR THE CONCEPTUAL DESIGN OF THE FLORIDA TRANSPORTATION DATA WAREHOUSE , 2002 .

[5]  J. P. Lewis,et al.  RBF interpolation and Gaussian process regression through an RKHS formulation , 2011 .

[6]  Lixin Li,et al.  Interpolation methods for spatio-temporal geographic data , 2004, Comput. Environ. Urban Syst..

[7]  Peter Z. Revesz Introduction to Databases - From Biological to Spatio-Temporal , 2010, Texts in Computer Science.

[8]  Dino Pedreschi,et al.  Visually driven analysis of movement data by progressive clustering , 2008, Inf. Vis..

[9]  M. R. Leadbetter,et al.  Hazard Analysis , 2018, System Safety Engineering and Risk Assessment.

[10]  Diansheng Guo,et al.  A graph-based approach to vehicle trajectory analysis , 2010, J. Locat. Based Serv..

[11]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[12]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[13]  Peter Z. Revesz,et al.  TVICS: An Efficient Traffic Video Information Converting System , 2012, 2012 19th International Symposium on Temporal Representation and Reasoning.

[14]  Kenneth J. Dueker,et al.  Implementing the Enterprise GIS in Transportation Database Design , 2007 .

[15]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[16]  Heng Wei,et al.  Modeling Speed Disturbance Absorption Following Current State–Control Action–Expected State Chains: Integrated Car-Following and Lane-Changing Scenarios , 2005 .

[17]  Gerald Recktenwald,et al.  Numerical Methods with MATLAB : Implementations and Applications , 2000 .

[18]  H. Miller Potential Contributions of Spatial Analysis to Geographic Information Systems for Transportation (GIS-T) , 2010 .

[19]  Yihong Gong,et al.  Lessons Learned from Building a Terabyte Digital Video Library , 1999, Computer.

[20]  M. Shcherbakov,et al.  A Survey of Forecast Error Measures , 2013 .

[21]  Bin Ran,et al.  A literature and best practices scan : ITS data management and archiving , 2002 .

[22]  Aye Aye Thant,et al.  Application of Cubic Spline Interpolation to Walking Patterns of Biped Robot , 2009 .

[23]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[24]  Ouri Wolfson,et al.  A weight-based map matching method in moving objects databases , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[25]  Heng Wei,et al.  Closure of "Video-Capture-Based Approach to Extract Multiple Vehicular Trajectory Data for Traffic Modeling" , 2005 .

[26]  T. Pham-Gia,et al.  The mean and median absolute deviations , 2001 .

[27]  G. Patamanska,et al.  Using Cubic Spline Interpolation to Estimate Vertical Soil Water Profile , 2007 .

[28]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[29]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[30]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[31]  Alexander Skabardonis,et al.  A Machine Vision System for Generating Vehicle Trajectories over Extended Freeway Segments , 2005 .

[32]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[33]  Scot Anderson,et al.  Efficient MaxCount and threshold operators of moving objects , 2009, GeoInformatica.

[34]  Boris S. Kerner,et al.  Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-Phase Traffic Theory , 2009 .

[35]  Gerald W. Recktenwald An Introduction to Numerical Methods with MATLAB , 2000 .

[36]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[37]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[38]  N-E El Faouzi NONPARAMETRIC TRAFFIC FLOW PREDICTION USING KERNEL ESTIMATOR , 1996 .

[39]  E. Nadaraya On Estimating Regression , 1964 .

[40]  William R. McShane,et al.  A review of pedestrian safety models for urban areas in Low and Middle Income Countries , 2016 .

[41]  Henry X. Liu,et al.  Use of Local Linear Regression Model for Short-Term Traffic Forecasting , 2003 .

[42]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[43]  Joachim Schelp,et al.  Data Integration Patterns , 2003 .

[44]  Carlo Zaniolo,et al.  Data models and query languages of spatio-temporal information (temporal database) , 2001 .

[45]  Jianqing Fan,et al.  On automatic boundary corrections , 1997 .

[46]  Jianqing Fan,et al.  Fast Implementations of Nonparametric Curve Estimators , 1994 .

[47]  S. Yakowitz,et al.  A comparison of kriging with nonparametric regression methods , 1985 .

[48]  Clement T. Yu,et al.  Techniques and Systems for Image and Video Retrieval , 1999, IEEE Trans. Knowl. Data Eng..

[49]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[50]  Wilhelm Leutzbach,et al.  Introduction to the Theory of Traffic Flow , 1987 .

[51]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[52]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[53]  Jieqing Tan,et al.  Sweeping Surface Generated by a Class of Generalized Quasi-cubic Interpolation Spline , 2007, International Conference on Computational Science.

[54]  S. Sheather A data-based algorithm for choosing the window width when estimating the density at a point , 1983 .

[55]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[56]  Ouri Wolfson,et al.  Extracting Semantic Location from Outdoor Positioning Systems , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[57]  Brian Lee Smith,et al.  PARAMETRIC AND NONPARAMETRIC TRAFFIC VOLUME FORECASTING , 2000 .

[58]  Joachim Engel,et al.  An iterative bandwidth selector for kernel estimation of densities and their derivatives , 1994 .

[59]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[60]  J. Faraway,et al.  Bootstrap choice of bandwidth for density estimation , 1990 .

[61]  Magnus Egerstedt,et al.  Optimal trajectory planning and smoothing splines , 2001, Autom..

[62]  Shawn Turner,et al.  Completing the Circle: Using Archived Operations Data to Better Link Decisions to Performance , 2001 .

[63]  Heng Wei,et al.  Observed lane-choice and lane-changing behaviors on an urban street network using video-capture-based approach and suggested structures of their models , 1999 .

[64]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[65]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[66]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[67]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[68]  Peter Z. Revesz,et al.  Local Polynomial Regression Models for Average Traffic Speed Estimation and Forecasting in Linear Constraint Databases , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[69]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[70]  D. W. Scott,et al.  Kernel density estimation revisited , 1977 .

[71]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[72]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[73]  Rüdiger Dillmann,et al.  A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[74]  Ramayya Krishnan,et al.  Calibrating Large Scale Vehicle Trajectory Data , 2012, 2012 IEEE 13th International Conference on Mobile Data Management.