Face repetition effects in implicit and explicit memory tests as measured by fMRI.

Recent parallels between neurophysiological and neuroimaging findings suggest that repeated stimulus processing produces decreased responses in brain regions associated with that processing--a 'repetition suppression' effect. In the present study, volunteers performed two tasks on repeated presentation of famous and unfamiliar faces during functional magnetic resonance imaging (fMRI). In the implicit task, they made fame-judgements (regardless of repetition); in the explicit task, they made episodic recognition judgements (regardless of familiarity). Only in the implicit task was repetition suppression observed: for famous faces in a right lateral fusiform region, and for both famous and unfamiliar faces in a left inferior occipital region. Repetition suppression is therefore not an automatic consequence of repeated perceptual processing of stimuli.

[1]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[2]  A. Young,et al.  Understanding face recognition. , 1986, British journal of psychology.

[3]  E. Renzi Current Issues on Prosopagnosia , 1986 .

[4]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[5]  Jules Davidoff,et al.  Recognition of unfamiliar faces in prosopagnosia , 1990, Neuropsychologia.

[6]  A. Young,et al.  Repetition Priming and Face Processing: Priming Occurs within the System that Responds to the Identity of a Face , 1990, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[7]  F M Miezin,et al.  Activation of the hippocampus in normal humans: a functional anatomical study of memory. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[9]  H. Roediger Implicit memory in normal human subjects , 1993 .

[10]  Michael D. Rugg,et al.  Event-Related Potentials and Stimulus Repetition in Direct and Indirect Tests of Memory , 1994 .

[11]  R. Desimone,et al.  Parallel neuronal mechanisms for short-term memory. , 1994, Science.

[12]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[13]  Debra A. Fleischman,et al.  Double Dissociation Between Memory Systems Underlying Explicit and Implicit Memory in the Human Brain , 1995 .

[14]  J D Gabrieli,et al.  Double dissociation of memory capacities after bilateral occipital-lobe or medial temporal-lobe lesions. , 1995, Brain : a journal of neurology.

[15]  Daniel L. Schacter,et al.  Brain regions associated with retrieval of structurally coherent visual information , 1995, Nature.

[16]  Karl J. Friston,et al.  Activation of Human Hippocampal Formation During Memory for Faces: A Pet Study , 1995, Cortex.

[17]  P. L. Tenpenny,et al.  Abstractionist versus episodic theories of repetition priming and word identification , 1995, Psychonomic bulletin & review.

[18]  N C Andreasen,et al.  Neural substrates of facial recognition. , 1996, The Journal of neuropsychiatry and clinical neurosciences.

[19]  W H Theodore,et al.  Functional mapping of human memory using PET: comparisons of conceptual and perceptual tasks. , 1996, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[20]  R. Desimone,et al.  Neural mechanisms for visual memory and their role in attention. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Karl J. Friston,et al.  The Trouble with Cognitive Subtraction , 1996, NeuroImage.

[22]  F. Craik,et al.  The effects of divided attention on encoding and retrieval processes in human memory. , 1996, Journal of experimental psychology. General.

[23]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[24]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[25]  C J Price,et al.  The neural systems sustaining face and proper-name processing. , 1998, Brain : a journal of neurology.

[26]  P. Reber,et al.  Contrasting cortical activity associated with category memory and recognition memory. , 1998, Learning & memory.

[27]  D. Schacter,et al.  Priming and the Brain , 1998, Neuron.

[28]  M. W. Brown,et al.  Recognition memory: neuronal substrates of the judgement of prior occurrence , 1998, Progress in Neurobiology.

[29]  N. Kanwisher,et al.  Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. , 1998, Journal of neurophysiology.

[30]  Alex Martin,et al.  Properties and mechanisms of perceptual priming , 1998, Current Opinion in Neurobiology.

[31]  O Josephs,et al.  Event-related functional magnetic resonance imaging: modelling, inference and optimization. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  T. Allison,et al.  Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. , 1999, Cerebral cortex.

[33]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[34]  M. Crommelinck,et al.  Effect of Familiarity on the Processing of Human Faces , 1999, NeuroImage.

[35]  N. Logothetis,et al.  IS FACE RECOGNITION NOT SO UNIQUE AFTER ALL? , 2000, Cognitive neuropsychology.

[36]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[37]  D. Berry,et al.  Gender stereotyping and decision processes: extending and reversing the gender bias in fame judgments. , 2000, Journal of experimental psychology. Learning, memory, and cognition.

[38]  Leslie G. Ungerleider,et al.  Complementary neural mechanisms for tracking items in human working memory. , 2000, Science.

[39]  Kohki Yoshikawa,et al.  Neural substrates for the recognition of newly learned faces: a functional MRI study , 2000, Neuropsychologia.

[40]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[41]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[42]  Jeffrey S. Bowers,et al.  In defense of abstractionist theories of repetition priming and word identification , 2000, Psychonomic bulletin & review.

[43]  T. Shallice,et al.  Confidence in Recognition Memory for Words: Dissociating Right Prefrontal Roles in Episodic Retrieval , 2000, Journal of Cognitive Neuroscience.

[44]  T. Schormann,et al.  Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. , 2000, Brain : a journal of neurology.

[45]  Ravi S. Menon,et al.  The effects of visual object priming on brain activation before and after recognition , 2000, Current Biology.

[46]  Mark S. Seidenberg,et al.  Neural Systems Underlying the Recognition of Familiar and Newly Learned Faces , 2000, The Journal of Neuroscience.

[47]  T. Shallice,et al.  Neuroimaging evidence for dissociable forms of repetition priming. , 2000, Science.

[48]  R L Buckner,et al.  Spatiotemporal Maps of Brain Activity Underlying Word Generation and Their Modification during Repetition Priming , 2001, The Journal of Neuroscience.

[49]  R. Henson,et al.  Effects of stimulus repetition on latency of BOLD impulse response , 2001, NeuroImage.

[50]  Rugg,et al.  Episodic memory retrieval: an (event-related) functional neuroimaging perspective , 2002 .