Applying Concept Formation Methods to Software Reuse

This paper describes an approach to software reuse that involves generating and retrieving abstractions from existing software systems using concept formation methods. The potential of the approach is illustrated through two important activities of the reuse process. First, the concept hierarchy generated by the concept formation methods is used for organizing and retrieving the artifacts inside a repository. Second, the generated concepts are used in identifying new abstractions that may be converted into new, more generic artifacts with better reuse potential. These experiments are part of a major software engineering research project involving many business and academic partners.

[1]  Rokia Missaoui,et al.  Experimental Comparison of Navigation in a Galois Lattice with Conventional Information Retrieval Methods , 1993, Int. J. Man Mach. Stud..

[2]  Guy W. Mineau,et al.  Automatic Structuring of Knowledge Bases by Conceptual Clustering , 1995, IEEE Trans. Knowl. Data Eng..

[3]  R. Schiffer,et al.  INTRODUCTION , 1988, Neurology.

[4]  Robert Godin,et al.  Lattice model of browsable data spaces , 1986, Inf. Sci..

[5]  Silvana Castano,et al.  A constructive approach to reuse of conceptual components , 1993, [1993] Proceedings Advances in Software Reuse.

[6]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[7]  Victor R. Basili,et al.  System Structure Analysis: Clustering with Data Bindings , 1985, IEEE Transactions on Software Engineering.

[8]  Norman Wilde,et al.  Maintenance Support for Object-Oriented Programs , 1992, IEEE Trans. Software Eng..

[9]  Charles W. Krueger,et al.  Software reuse , 1992, CSUR.

[10]  T. Capers Jones Reusability in Programming: A Survey of the State of the Art , 1984, IEEE Transactions on Software Engineering.

[11]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[12]  Oscar Nierstrasz,et al.  Class management for software communities , 1990, CACM.

[13]  Mustafa Abstract , 1952 .

[14]  Rokia Missaoui,et al.  Learning algorithms using a Galois lattice structure , 1991, [Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91.

[15]  R. Wille Concept lattices and conceptual knowledge systems , 1992 .

[16]  Rokia Missaoui,et al.  Induction of Generic Data Models by Conceptual Clustering , 1993, SEKE.

[17]  Joel L. Fagan,et al.  The effectiveness of a nonsyntactic approach to automatic phrase indexing for document retrieval , 1989, JASIS.

[18]  Luqi,et al.  Software engineering with abstractions , 1991 .

[19]  Claudio Carpineto,et al.  GALOIS: An Order-Theoretic Approach to Conceptual Clustering , 1993, ICML.

[20]  David A. Carrington,et al.  Deriving modular designs from formal specifications , 1993, SIGSOFT '93.

[21]  Joel L. Fagan The effectiveness of a nonsyntatic approach to automatic phrase indexing for document retrieval , 1989 .

[22]  Victor R. Basili,et al.  A reference architecture for the component factory , 1992, TSEM.

[23]  Hafedh Mili,et al.  Building and maintaining analysis-level class hierarchies using Galois Lattices , 1993, OOPSLA '93.

[24]  LebowitzMichael Experiments with Incremental Concept Formation , 1987 .

[25]  Premkumar T. Devanbu,et al.  LaSSIE—a knowledge-based software information system , 1991, ICSE '90.

[26]  Michael Lebowitz,et al.  Experiments with incremental concept formation: UNIMEM , 2004, Machine Learning.

[27]  Gail E. Kaiser,et al.  An Information Retrieval Approach For Automatically Constructing Software Libraries , 1991, IEEE Trans. Software Eng..

[28]  B. C. Brookes THEORY OF THE BRADFORD LAW , 1977 .