Constructions and families of covering codes and saturated sets of points in projective geometry

In Davydov (1990), constructions of linear binary covering codes were considered. In the present paper, constructions and techniques of the earlier paper are developed and modified for q-ary linear nonbinary covering codes, q/spl ges/3, and new constructions are proposed. The described constructions design an infinite family of codes with covering radius R based on a starting code of the same covering radius. For arbitrary R/spl ges/2, q/spl ges/3, new infinite families of nonbinary covering codes with "good" parameters are obtained with the help of an iterative process when constructed codes are the starting codes for the following steps. The table of upper bounds on the length function for codes with q=3, R=2, 3, and codimension up to 24 is given. The author proposes to use saturated sets of points in projective geometries over finite fields as parity check matrices of starting codes. New saturated sets are obtained.

[1]  Emanuela Ughi,et al.  Saturated Configurations of Points in Projective Galois Spaces , 1987, Eur. J. Comb..

[2]  Jacques Calmet,et al.  Algebraic Algorithms and Error-Correcting Codes , 1985, Lecture Notes in Computer Science.

[3]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[4]  Gábor Korchmáros,et al.  New Examples of Complete k-Arcs in PG(2, q) , 1983, Eur. J. Comb..

[5]  Tor Helleseth,et al.  On the covering radius of cyclic linear codes and arithmetic codes , 1985, Discret. Appl. Math..

[6]  Rita Capodaglio Di Cocco On Thick (Q+2)-Sets , 1986 .

[7]  Ernst M. Gabidulin,et al.  Linear codes with covering radius 2 and other new covering codes , 1991, IEEE Trans. Inf. Theory.

[8]  Patrick Solé,et al.  Asymptotic bounds on the covering radius of binary codes , 1990, IEEE Trans. Inf. Theory.

[9]  N. J. A. Sloane,et al.  Further results on the covering radius of codes , 1986, IEEE Trans. Inf. Theory.

[10]  Patric R. J. Östergård,et al.  Upper bounds for q-ary covering codes , 1991, IEEE Trans. Inf. Theory.

[11]  Antoine Lobstein,et al.  On normal and subnormal q-ary codes , 1989, IEEE Trans. Inf. Theory.

[12]  A. A. Tietavainen An upper bound on the covering radius as a function of the dual distance , 1990 .

[13]  Jacobus H. van Lint Recent Results on Covering Problems , 1988, AAECC.

[14]  Heeralal Janwa,et al.  Some Optimal Codes from Algebraic Geometry and Their Covering Radii , 1990, Eur. J. Comb..

[15]  N. J. A. Sloane,et al.  On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.

[16]  Iiro Honkala,et al.  A new construction for covering codes , 1988, IEEE Trans. Inf. Theory.

[17]  John P. Robinson,et al.  Error recovery for variable length codes , 1985, IEEE Trans. Inf. Theory.

[18]  Richard A. Brualdi,et al.  On the covering radius of a code and its subcodes , 1990, Discret. Math..

[19]  T. Etzion,et al.  Constructions for perfect mixed codes and other covering codes , 1993, IEEE Trans. Inf. Theory.

[20]  A. A. Davydov,et al.  Constructions, families, and tables of binary linear covering codes , 1994, IEEE Trans. Inf. Theory.

[21]  Aimo Tietäväinen,et al.  An upper bound on the covering radius as a function of the dual distance , 1990, IEEE Trans. Inf. Theory.

[22]  J. Hirschfeld Surveys in Combinatorics: MAXIMUM SETS IN FINITE PROJECTIVE SPACES , 1983 .

[23]  Alexander A. Davydov Constructions of Codes with Covering Radius 2 , 1991, Algebraic Coding.

[24]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[25]  Raymond Hill,et al.  Caps and codes , 1978, Discret. Math..

[26]  Aimo Tietäväinen Covering radius and dual distance , 1991, Des. Codes Cryptogr..

[27]  Richard M. Wilson,et al.  Short codes with a given coveting radius , 1989, IEEE Trans. Inf. Theory.

[28]  Richard A. Brualdi,et al.  On the Length of Codes with a Given Covering Radius , 1990 .

[29]  Giuseppe Pellegrino Sur Les K-Arcs Complets Des Plans De Galois D'Ordre Impair , 1983 .