An Accurate Gaussian Process-Based Early Warning System for Dengue Fever

Dengue fever is a mosquito-borne disease present in all Brazilian territory. Brazilian government, however, lacks an accurate early warning system to quickly predict future dengue outbreaks. Such system would help health authorities to plan their actions and to reduce the impact of the disease in the country. However, most attempts to model dengue fever use parametric models which enforce a specific expected behaviour and fail to capture the inherent complexity of dengue dynamics. Therefore, we propose a new Bayesian non-parametric model based on Gaussian processes to design an accurate and flexible model that outperforms previous/standard techniques and can be incorporated into an early warning system, specially at cities from Southeast and Center-West regions. The model also helps understanding dengue dynamics in Brazil through the analysis of the covariance functions generated.

[1]  Lon-Mu Liu,et al.  Joint Estimation of Model Parameters and Outlier Effects in Time Series , 1993 .

[2]  C. Rotela,et al.  An operative dengue risk stratification system in Argentina based on geospatial technology. , 2012, Geospatial health.

[3]  S. Cassadou,et al.  Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors , 2011, BMC infectious diseases.

[4]  A. Wilder-Smith,et al.  Meteorological factors and El Niño Southern Oscillation are independently associated with dengue infections , 2011, Epidemiology and Infection.

[5]  John S. Brownstein,et al.  The global distribution and burden of dengue , 2013, Nature.

[6]  O. Horstick,et al.  Modeling tools for dengue risk mapping - a systematic review , 2014, International Journal of Health Geographics.

[7]  Trevor C. Bailey,et al.  Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil , 2011, Comput. Geosci..

[8]  K. Mengersen,et al.  Climate change and dengue: a critical and systematic review of quantitative modelling approaches , 2014, BMC Infectious Diseases.

[9]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[10]  Aki Vehtari,et al.  Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology , 2007, Gaussian Processes in Practice.

[11]  Shilu Tong,et al.  Dengue fever and El Niño/Southern Oscillation in Queensland, Australia: a time series predictive model , 2009, Occupational and Environmental Medicine.

[12]  Kerrie Mengersen,et al.  Spatial Patterns and Socioecological Drivers of Dengue Fever Transmission in Queensland, Australia , 2011, Environmental health perspectives.

[13]  Szu-Chieh Chen,et al.  Modeling the transmission dynamics of dengue fever: implications of temperature effects. , 2012, The Science of the total environment.