3D Printing of Arbitrary Perovskite Nanowire Heterostructures

Deterministic integration of arbitrary semiconductor heterostructures opens a new class of modern electronics and optoelectronics. However, the realization of such heterostructures continues to suffer from impracticality, requiring energy‐ and labor‐intensive, time‐consuming fabrication processes. Here a 3D printing approach to fabricate freestanding metal halide perovskite nanowire heterostructures with a high degree of control over shape and composition is demonstrated. These features arise from freeform guiding of evaporation‐driven perovskite crystallization by a femtoliter precursor meniscus formed on a printing nozzle. By using a double‐barreled nanopipette as a printing nozzle, “all‐at‐once” heterostructure fabrication is achieved within seconds. The 3D‐printed perovskite nanowire heterojunctions with multiple emission colors provide exciting optical functionalities such as programmable color mixing and encryption at the single nanopixel level. This “lithography‐free” additive approach opens up the possibility to freely design and realize heterostructure‐based devices without the constraints of traditional manufacturing processes.

[1]  Yuehua Wu,et al.  On-wire axial perovskite heterostructures for monolithic dual-wavelength laser , 2022, Nano Energy.

[2]  J. Neaton,et al.  Directed assembly of layered perovskite heterostructures as single crystals , 2021, Nature.

[3]  Akriti,et al.  Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures , 2021, Nature Nanotechnology.

[4]  Darien J. Morrow,et al.  Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites , 2020, Nature Nanotechnology.

[5]  R. Friend,et al.  Metal halide perovskites for light-emitting diodes , 2020, Nature Materials.

[6]  David T. Limmer,et al.  Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures. , 2020, Nano letters.

[7]  Xiao Zhi Qiu,et al.  A biomimetic eye with a hemispherical perovskite nanowire array retina , 2020, Nature.

[8]  Akriti,et al.  Two-dimensional halide perovskite lateral epitaxial heterostructures , 2020, Nature.

[9]  Thomas G. Allen,et al.  Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems , 2020, Nature Communications.

[10]  Mark A. Skylar-Scott,et al.  Voxelated soft matter via multimaterial multinozzle 3D printing , 2019, Nature.

[11]  Jaeyeon Pyo,et al.  3D Nanoprinting of Perovskites , 2019, Advanced materials.

[12]  A. Pan,et al.  Multicolor Heterostructures of Two-Dimensional Layered Halide Perovskites that Show Interlayer Energy Transfer. , 2018, Journal of the American Chemical Society.

[13]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[14]  Qinglin Zhang,et al.  Controllable Epitaxial Growth of Core–Shell PbSe@CsPbBr3 Wire Heterostructures , 2018, Advanced materials.

[15]  Peng Gao,et al.  High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes , 2018, 1804.09785.

[16]  Jinsong Huang,et al.  Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. , 2017, Nature materials.

[17]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[18]  P. Yang,et al.  Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange , 2017, Proceedings of the National Academy of Sciences.

[19]  Yiping Wang,et al.  Epitaxial Halide Perovskite Lateral Double Heterostructure. , 2017, ACS nano.

[20]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[21]  Nana Wang,et al.  Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells , 2016, Nature Photonics.

[22]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[23]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[24]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[25]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[26]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[27]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[28]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[29]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[30]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[31]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[32]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[33]  R. Pillarisetty,et al.  Academic and industry research progress in germanium nanodevices , 2011, Nature.

[34]  Min-Feng Yu,et al.  Meniscus-Confined Three-Dimensional Electrodeposition for Direct Writing of Wire Bonds , 2010, Science.

[35]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[36]  Peide D. Ye,et al.  GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition , 2003 .

[37]  D. Schroder,et al.  Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing , 2003 .