Handbook of Perception and Cognition

[1]  V. S. Costa,et al.  Inductive Logic Programming , 2014, Lecture Notes in Computer Science.

[2]  Donald Michie,et al.  BOXES: AN EXPERIMENT IN ADAPTIVE CONTROL , 2013 .

[3]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[4]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[5]  Allen Newell,et al.  The problem of expensive chunks and its solution by restricting expressiveness , 1993, Machine Learning.

[6]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[7]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[8]  C. S. Wallace,et al.  Coding Decision Trees , 1993, Machine Learning.

[9]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[10]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[11]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[12]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[13]  Tom M. Mitchell,et al.  Explanation-Based Generalization: A Unifying View , 1986, Machine Learning.

[14]  A. Newell,et al.  Chunking in Soar: The Anatomy of a General Learning Mechanism , 1986, Machine Learning.

[15]  Andrew W. Moore,et al.  Prioritized sweeping: Reinforcement learning with less data and less time , 2004, Machine Learning.

[16]  D. Kibler,et al.  Instance-based learning algorithms , 2004, Machine Learning.

[17]  S. Pattinson,et al.  Learning to fly. , 1998 .

[18]  Andreas Stolcke,et al.  Best-first Model Merging for Hidden Markov Model Induction , 1994, ArXiv.

[19]  Dean A. Pomerleau,et al.  Neural Network Perception for Mobile Robot Guidance , 1993 .

[20]  Prasad Tadepalli,et al.  Learning from Queries and Examples with Tree-structured Bias , 1993, ICML.

[21]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[22]  Gerald Tesauro,et al.  Temporal Difference Learning of Backgammon Strategy , 1992, ML Workshop.

[23]  Radford M. Neal Connectionist Learning of Belief Networks , 1992, Artif. Intell..

[24]  Saso Dzeroski,et al.  PAC-learnability of determinate logic programs , 1992, COLT '92.

[25]  Michael Kearns,et al.  Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[26]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[27]  Balas K. Natarajan,et al.  Machine Learning: A Theoretical Approach , 1992 .

[28]  Manny Rayner,et al.  Quantitative Evaluation of Explanation-Based Learning as an Optimisation Tool for a Large-Scale Natural Language System , 1991, IJCAI.

[29]  Thomas G. Dietterich,et al.  Readings in Machine Learning , 1991 .

[30]  David Heckerman,et al.  Probabilistic similarity networks , 1991, Networks.

[31]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[32]  David J. Spiegelhalter,et al.  Sequential updating of conditional probabilities on directed graphical structures , 1990, Networks.

[33]  Leonard Pitt,et al.  On the necessity of Occam algorithms , 1990, STOC '90.

[34]  Daniel N. Osherson,et al.  Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists , 1990 .

[35]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[36]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[37]  Sturart J. Russell,et al.  The use of knowledge in analogy and induction , 1989 .

[38]  James Kelly,et al.  AutoClass: A Bayesian Classification System , 1993, ML.

[39]  Steven Minton,et al.  Quantitative Results Concerning the Utility of Explanation-based Learning , 1988, Artif. Intell..

[40]  Stephen Muggleton,et al.  Machine Invention of First Order Predicates by Inverting Resolution , 1988, ML.

[41]  黃崇冀,et al.  Machine learning : an artificial intelligence approach , 1988 .

[42]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[43]  P. W. Jones,et al.  Bandit Problems, Sequential Allocation of Experiments , 1987 .

[44]  Benjamin N. Grosof,et al.  A Declarative Approach to Bias in Concept Learning , 1987, AAAI.

[45]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[46]  Stuart J. Russell,et al.  A quantitative analysis of analogy by similarity , 1986, AAAI 1986.

[47]  Mark A. Gluck,et al.  Information, Uncertainty and the Utility of Categories , 1985 .

[48]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[49]  H. Simon,et al.  Studying Scientific Discovery by Computer Simulation , 1983, Science.

[50]  Dedre Gentner,et al.  Structure-Mapping: A Theoretical Framework for Analogy , 1983, Cogn. Sci..

[51]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[52]  Douglas B. Lenat,et al.  The ubiquity of discovery , 1993, AFIPS National Computer Conference.

[53]  Tom Michael Mitchell,et al.  Model-directed learning of production rules , 1977, SGAR.

[54]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[55]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[56]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[57]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[58]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[59]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..