Distributed Fault Detection Using Consensus of Markov Chains

We propose a fault detection procedure appropriate for use in a variety of industrial engineering contexts, which employs consensus among a group of agents about the state of a system. Markov chains are used to model subsystem behaviour, and consensus is reached by way of an iterative method based on estimates of a mixture of the transition matrices of these chains. To deal with the case where system states cannot be observed directly, we extended the procedure to accommodate Hidden Markov Models.

[1]  Silvio Simani,et al.  Model-based fault diagnosis in dynamic systems using identification techniques , 2003 .

[2]  Richard D. Braatz,et al.  Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes , 2000 .

[3]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[4]  Manfred Gilli,et al.  Understanding complex systems , 1981, Autom..

[5]  Laurence A. Baxter,et al.  Reliability Analysis for Engineers: An Introduction , 1996 .

[6]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[7]  Luis E. Garza-Castañón,et al.  Integration of Fault Detection and Diagnosis in a Probabilistic Logic Framework , 2002, IBERAMIA.

[8]  E. Seneta,et al.  Towards consensus: some convergence theorems on repeated averaging , 1977, Journal of Applied Probability.

[9]  Rolf Isermann,et al.  Process fault detection based on modeling and estimation methods - A survey , 1984, Autom..

[10]  Riccardo M. G. Ferrari,et al.  Distributed fault diagnosis with overlapping decompositions and consensus filters , 2007, 2007 American Control Conference.

[11]  Albert Benveniste,et al.  Fault Detection and Diagnosis in Distributed Systems: An Approach by Partially Stochastic Petri Nets , 1998, Discret. Event Dyn. Syst..

[12]  M. Degroot Reaching a Consensus , 1974 .

[13]  R. Kalman,et al.  New results in linear prediction and filtering theory Trans. AMSE , 1961 .

[14]  Halina Frydman Estimation in the Mixture of Markov Chains Moving With Different Speeds , 2003 .

[15]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[16]  Nemanja Ilic,et al.  Distributed Change Detection Based on a Consensus Algorithm , 2011, IEEE Transactions on Signal Processing.

[17]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[18]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[19]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[20]  W. Stewart,et al.  The Kronecker product and stochastic automata networks , 2004 .

[21]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[22]  T. W. Anderson,et al.  Statistical Inference about Markov Chains , 1957 .

[23]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[24]  Albert Benveniste,et al.  Markov nets: probabilistic models for distributed and concurrent systems , 2003, IEEE Trans. Autom. Control..

[25]  M. Stone The Opinion Pool , 1961 .

[26]  Rolf Isermann Model-based fault-detection and diagnosis - status and applications § , 2004 .

[27]  Rolf Isermann,et al.  Model-based fault-detection and diagnosis - status and applications , 2004, Annu. Rev. Control..

[28]  Roberto Setola,et al.  Complex Networks and Critical Infrastructures , 2009 .

[29]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[30]  Eric Fabre,et al.  Monitoring distributed systems with distributed algorithms , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[31]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[32]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[33]  R. Olfati-Saber,et al.  Distributed Fault Diagnosis using Sensor Networks and Consensus-based Filters , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[34]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[35]  Sudipto Guha,et al.  Inferring Mixtures of Markov Chains , 2004, COLT.

[36]  R. Isermann,et al.  Model base fault detection and diagnosis methods , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[37]  Paul M. Frank,et al.  Issues of Fault Diagnosis for Dynamic Systems , 2010, Springer London.

[38]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[39]  T. Funabashi,et al.  Multi-Agent based Control and Protection of Power Distributed System - Protection Scheme with Simplified Information Utilization - , 2005, Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems.