Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer

[1]  A. Whittemore,et al.  Consortium analysis of 7 candidate SNPs for ovarian cancer , 2008, International journal of cancer.

[2]  John L Hopper,et al.  Multiple loci with different cancer specificities within the 8q24 gene desert. , 2008, Journal of the National Cancer Institute.

[3]  A. Whittemore,et al.  Progesterone receptor variation and risk of ovarian cancer is limited to the invasive endometrioid subtype: results from the ovarian cancer association consortium pooled analysis , 2008, British Journal of Cancer.

[4]  Joaquín Dopazo,et al.  Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases , 2007, Nucleic Acids Res..

[5]  N. Weiss,et al.  Menopausal Hormone Therapy and Risk of Epithelial Ovarian Cancer , 2007, Cancer Epidemiology Biomarkers & Prevention.

[6]  A. Whittemore,et al.  Screening for the BRCA1‐ins6kbEx13 mutation: potential for misdiagnosis , 2007, Human mutation.

[7]  Francesmary Modugno,et al.  Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. , 2007, Cancer research.

[8]  Douglas F. Easton,et al.  Tagging Single Nucleotide Polymorphisms in the BRIP1 Gene and Susceptibility to Breast and Ovarian Cancer , 2007, PloS one.

[9]  N. Martin,et al.  KRAS variation and risk of endometriosis. , 2006, Molecular human reproduction.

[10]  A. Whittemore,et al.  Common variants in RB1 gene and risk of invasive ovarian cancer. , 2006, Cancer research.

[11]  Joaquín Dopazo,et al.  PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes , 2006, Nucleic Acids Res..

[12]  D. Easton,et al.  Risk prediction models for familial breast cancer. , 2006, Future oncology.

[13]  M. Stratton,et al.  COSMIC 2005 , 2006, British Journal of Cancer.

[14]  Arlo Z. Randall,et al.  Prediction of protein stability changes for single‐site mutations using support vector machines , 2005, Proteins.

[15]  S. Gabriel,et al.  Efficiency and power in genetic association studies , 2005, Nature Genetics.

[16]  D. Duggan,et al.  Recent developments in genomewide association scans: a workshop summary and review. , 2005, American journal of human genetics.

[17]  Modesto Orozco,et al.  PMUT: a web-based tool for the annotation of pathological mutations on proteins , 2005, Bioinform..

[18]  J. Ferlay,et al.  Global Cancer Statistics, 2002 , 2005, CA: a cancer journal for clinicians.

[19]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[20]  Malcolm C Pike,et al.  Clarifying the PROGINS allele association in ovarian and breast cancer risk: a haplotype-based analysis. , 2005, Journal of the National Cancer Institute.

[21]  Yun Wu,et al.  Her-2/neu expression and amplification in early stage ovarian surface epithelial neoplasms. , 2004, Gynecologic oncology.

[22]  A. Whittemore,et al.  STK15 polymorphisms and association with risk of invasive ovarian cancer. , 2004, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[23]  S. Russell,et al.  A multistep model for ovarian tumorigenesis: the value of mutation analysis in the KRAS and BRAF genes , 2004, The Journal of pathology.

[24]  J. Klijn,et al.  Pathology of Ovarian Cancers in BRCA1 and BRCA2 Carriers , 2004, Clinical Cancer Research.

[25]  A. Flanagan,et al.  In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low‐grade serous tumours , 2004, The Journal of pathology.

[26]  Christopher A. Haiman,et al.  Choosing Haplotype-Tagging SNPS Based on Unphased Genotype Data Using a Preliminary Sample of Unrelated Subjects with an Example from the Multiethnic Cohort Study , 2003, Human Heredity.

[27]  Oscar Lin,et al.  Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma. , 2003, Gynecologic oncology.

[28]  B. No̸rgaard-Pedersen,et al.  Distribution of HER‐2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma , 2003, Cancer.

[29]  S. Kjaer,et al.  K-ras alterations in Danish ovarian tumour patients. From the Danish "Malova" Ovarian Cancer study. , 2003, Gynecologic oncology.

[30]  H. Avraham,et al.  A Novel Tricomplex of BRCA1, Nmi, and c-Myc Inhibits c-Myc-induced Human Telomerase Reverse Transcriptase Gene (hTERT) Promoter Activity in Breast Cancer* , 2002, The Journal of Biological Chemistry.

[31]  Lewis C Cantley,et al.  The phosphoinositide 3-kinase pathway. , 2002, Science.

[32]  S. Gabriel,et al.  The Structure of Haplotype Blocks in the Human Genome , 2002, Science.

[33]  Peter H. Westfall,et al.  Testing Association of Statistically Inferred Haplotypes with Discrete and Continuous Traits in Samples of Unrelated Individuals , 2002, Human Heredity.

[34]  Douglas F. Easton,et al.  Polygenic susceptibility to breast cancer and implications for prevention , 2002, Nature Genetics.

[35]  G. Goodman,et al.  Overexpression of HER-2 in ovarian carcinomas. , 2001, Cancer research.

[36]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.

[37]  B. Ponder,et al.  The contribution of germline BRCA1 and BRCA2 mutations to familial ovarian cancer: no evidence for other ovarian cancer-susceptibility genes. , 1999, American journal of human genetics.

[38]  W. Leonard,et al.  Functional Association of Nmi with Stat5 and Stat1 in IL-2- and IFN γ-Mediated Signaling , 1999, Cell.

[39]  E. Musulen,et al.  K‐ras mutations in nonmucinous ovarian epithelial tumors , 1998, Cancer.

[40]  J Chang-Claude,et al.  Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. , 1998, American journal of human genetics.

[41]  D. Easton,et al.  Contribution of BRCA1 mutations to ovarian cancer. , 1997, The New England journal of medicine.

[42]  A. Villanueva,et al.  K‐ras mutations in mucinous ovarian tumors , 1997, Cancer.

[43]  A. Zervos,et al.  Isolation and characterization of Nmi, a novel partner of Myc proteins. , 1996, Oncogene.

[44]  M. Rocchi,et al.  Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. , 1994, Genomics.

[45]  M. Gerretsen,et al.  L1210 cells selected for resistance to methoxymorpholinyl doxorubicin appear specifically resistant to this class of morpholinyl derivatives , 1994 .

[46]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[47]  Carl W. Miller,et al.  Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium, ovary, prostate and osteosarcomas, and discovery of a PIK3CA pseudogene. , 2007, Leukemia research.

[48]  S. Elmasry Somatic genetic mutations and clinical outcome in gynaecological cancers , 2005 .

[49]  Joe W. Gray,et al.  PIK3CA is implicated as an oncogene in ovarian cancer , 1999, Nature Genetics.

[50]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[51]  L. Cantley,et al.  Phosphoinositide kinases. , 1998, Annual review of biochemistry.

[52]  J. Rhim Viruses, oncogenes, and cancer. , 1988, Cancer detection and prevention.

[53]  Rhim Js Viruses, oncogenes, and cancer. , 1988 .