Fast simulation of truncated Gaussian distributions

We consider the problem of simulating a Gaussian vector X, conditional on the fact that each component of X belongs to a finite interval [ai,bi], or a semi-finite interval [ai,+∞). In the one-dimensional case, we design a table-based algorithm that is computationally faster than alternative algorithms. In the two-dimensional case, we design an accept-reject algorithm. According to our calculations and numerical studies, the acceptance rate of this algorithm is bounded from below by 0.5 for semi-finite truncation intervals, and by 0.47 for finite intervals. Extension to three or more dimensions is discussed.

[1]  A. Prékopa On logarithmic concave measures and functions , 1973 .

[2]  M. J. Wichura The percentage points of the normal distribution , 1988 .

[3]  Christian P. Robert,et al.  Perfect simulation of positive Gaussian distributions , 2003, Stat. Comput..

[4]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[5]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[6]  M. Pitt,et al.  Efficient Bayesian inference for Gaussian copula regression models , 2006 .

[7]  Ming-Hui Chen,et al.  Bayesian Analysis for a Constrained Linear Multiple Regression Problem for Predicting the New Crop of Apples , 1996 .

[8]  Arif Zaman Generating Random Numbers from a Unimodal Density by Cutting Corners , 2007 .

[9]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[10]  Josef Leydold,et al.  Automatic sampling with the ratio-of-uniforms method , 2000, TOMS.

[11]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[12]  W. Wong,et al.  The Calculation of Posterior Distributions by MARTIN A . TANNER and , 2007 .

[13]  G. Marsaglia Generating a Variable from the Tail of the Normal Distribution , 1964 .

[14]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[15]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[16]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[17]  Wolfgang Hörmann,et al.  Algorithm 802: an automatic generator for bivariate log-concave distributions , 2000, TOMS.

[18]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[19]  George Marsaglia,et al.  A Fast, Easily Implemented Method for Sampling from Decreasing or Symmetric Unimodal Density Functions , 1984 .

[20]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[21]  Pablo A. Ferrari,et al.  Perfectly random sampling of truncated multinormal distributions , 2005, Advances in Applied Probability.

[22]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[23]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[24]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[25]  C. Edwards,et al.  Rational Chebyshev approximations for the inverse of the error function , 1976 .

[26]  M. Evans,et al.  Random Variable Generation Using Concavity Properties of Transformed Densities , 1998 .

[27]  Joachim H. Ahrens A one-table method for sampling from continuous and discrete distributions , 2005, Computing.

[28]  J. D. Beasley,et al.  Algorithm AS 111: The Percentage Points of the Normal Distribution , 1977 .

[29]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[30]  Petros Dellaportas,et al.  Assessment of Athens's metro passenger behaviour via a multiranked probit model , 2003 .

[31]  S. Chib Bayes inference in the Tobit censored regression model , 1992 .

[32]  Wolfgang Hörmann,et al.  A Note on Perfect Slice Sampling , 2006 .

[33]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[34]  Wolfgang Hörmann,et al.  A rejection technique for sampling from T-concave distributions , 1995, TOMS.

[35]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[36]  Agostino Nobile,et al.  A hybrid Markov chain for the Bayesian analysis of the multinomial probit model , 1998, Stat. Comput..

[37]  C. Andrieu,et al.  Bayesian model selection and parameter estimation of nuclear emission spectra using RJMCMC , 2003 .

[38]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .