Fast simulation of truncated Gaussian distributions
暂无分享,去创建一个
[1] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[2] M. J. Wichura. The percentage points of the normal distribution , 1988 .
[3] Christian P. Robert,et al. Perfect simulation of positive Gaussian distributions , 2003, Stat. Comput..
[4] Wolfgang Hörmann,et al. Automatic Nonuniform Random Variate Generation , 2011 .
[5] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[6] M. Pitt,et al. Efficient Bayesian inference for Gaussian copula regression models , 2006 .
[7] Ming-Hui Chen,et al. Bayesian Analysis for a Constrained Linear Multiple Regression Problem for Predicting the New Crop of Apples , 1996 .
[8] Arif Zaman. Generating Random Numbers from a Unimodal Density by Cutting Corners , 2007 .
[9] John Geweke,et al. Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .
[10] Josef Leydold,et al. Automatic sampling with the ratio-of-uniforms method , 2000, TOMS.
[11] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[12] W. Wong,et al. The Calculation of Posterior Distributions by MARTIN A . TANNER and , 2007 .
[13] G. Marsaglia. Generating a Variable from the Tail of the Normal Distribution , 1964 .
[14] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[15] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[16] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[17] Wolfgang Hörmann,et al. Algorithm 802: an automatic generator for bivariate log-concave distributions , 2000, TOMS.
[18] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[19] George Marsaglia,et al. A Fast, Easily Implemented Method for Sampling from Decreasing or Symmetric Unimodal Density Functions , 1984 .
[20] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[21] Pablo A. Ferrari,et al. Perfectly random sampling of truncated multinormal distributions , 2005, Advances in Applied Probability.
[22] By W. R. GILKSt,et al. Adaptive Rejection Sampling for Gibbs Sampling , 2010 .
[23] S. Chib,et al. Analysis of multivariate probit models , 1998 .
[24] Adrian F. M. Smith,et al. Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .
[25] C. Edwards,et al. Rational Chebyshev approximations for the inverse of the error function , 1976 .
[26] M. Evans,et al. Random Variable Generation Using Concavity Properties of Transformed Densities , 1998 .
[27] Joachim H. Ahrens. A one-table method for sampling from continuous and discrete distributions , 2005, Computing.
[28] J. D. Beasley,et al. Algorithm AS 111: The Percentage Points of the Normal Distribution , 1977 .
[29] C. Robert. Simulation of truncated normal variables , 2009, 0907.4010.
[30] Petros Dellaportas,et al. Assessment of Athens's metro passenger behaviour via a multiranked probit model , 2003 .
[31] S. Chib. Bayes inference in the Tobit censored regression model , 1992 .
[32] Wolfgang Hörmann,et al. A Note on Perfect Slice Sampling , 2006 .
[33] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[34] Wolfgang Hörmann,et al. A rejection technique for sampling from T-concave distributions , 1995, TOMS.
[35] Peter E. Rossi,et al. An exact likelihood analysis of the multinomial probit model , 1994 .
[36] Agostino Nobile,et al. A hybrid Markov chain for the Bayesian analysis of the multinomial probit model , 1998, Stat. Comput..
[37] C. Andrieu,et al. Bayesian model selection and parameter estimation of nuclear emission spectra using RJMCMC , 2003 .
[38] G. Marsaglia,et al. The Ziggurat Method for Generating Random Variables , 2000 .