A study of process monitoring based on inverse Gaussian distribution

The average run length unbiased control charts are proposed.The parameter estimation seriously affects the performance of the proposed charts.The shape control chart with desired ARL 0 is developed when the parameter is estimated.The sample size largely affects the performance of the location chart.The coefficient of variation greatly influences the ability of the location chart. The inverse Gaussian distribution has considerable applications in describing product life, employee service times, and so on. In this paper, the average run length (ARL) unbiased control charts, which monitor the shape and location parameters of the inverse Gaussian distribution respectively, are proposed when the in-control parameters are known. The effects of parameter estimation on the performance of the proposed control charts are also studied. An ARL-unbiased control chart for the shape parameter with the desired ARL 0 , which takes the variability of the parameter estimate into account, is further developed. The performance of the proposed control charts is investigated in terms of the ARL and standard deviation of the run length. Finally, an example is used to illustrate the proposed control charts.

[1]  Philippe Castagliola,et al.  Optimal design of the double sampling X chart with estimated parameters based on median run length , 2014, Comput. Ind. Eng..

[2]  Douglas M. Hawkins,et al.  Inverse Gaussian cumulative sum control charts for location and shape , 1997 .

[3]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[4]  Thong Ngee Goh,et al.  A study of EWMA chart with transformed exponential data , 2007 .

[5]  R. Does,et al.  Shewhart-Type Charts in Nonstandard Situations , 1995 .

[6]  Lili Tian,et al.  Confidence intervals of the ratio of means of two independent inverse Gaussian distributions , 2005 .

[7]  Ronald J. M. M. Does,et al.  Shewhart-type charts in nonstandard situations (with discussion) , 1995 .

[8]  Charles P. Quesenberry,et al.  SPC Q charts for a binomial parameter p: Short or long runs , 1991 .

[9]  Lai K. Chan,et al.  Skewness correction X̄ and R charts for skewed distributions , 2003 .

[10]  Y. Lio,et al.  A bootstrap control chart for inverse Gaussian percentiles , 2010 .

[11]  C. H. Sim Inverse Gaussian Control Charts for Monitoring Process Variability , 2003 .

[12]  Rick L. Edgeman,et al.  INVERSE GAUSSIAN CONTROL CHARTS , 1989 .

[13]  Rick L. Edgeman Sprt and cusum results for inverse gaussian processes , 1996 .

[14]  Thong Ngee Goh,et al.  Data transformation for geometrically distributed quality characteristics , 2000 .

[15]  Pei-Wen Chen,et al.  An ARL-unbiased design of time-between-events control charts with runs rules , 2011 .

[16]  J. F. Mahoney The influence of parent population distribution on d2 values , 1998 .

[17]  Abdellatif M.A. Haridy,et al.  The economic design of cumulative sum charts used to maintain current control of non-normal process means , 1996 .

[18]  Huifen Chen,et al.  Comparisons of the symmetric and asymmetric control limits for X and R charts , 2010, Comput. Ind. Eng..

[19]  Charles P. Quesenberry,et al.  ON PROPERTIES OF BINOMIAL Q CHARTS FOR ATTRIBUTES , 1995 .

[20]  Charles P. Quesenberry,et al.  The Effect of Sample Size on Estimated Limits for and X Control Charts , 1993 .

[21]  George Tagaras,et al.  Economic X̄ Charts with Asymmetric Control Limits , 1989 .

[22]  Pandu R. Tadikamalla,et al.  Technical note: An improved range chart for normal and long‐tailed symmetrical distributions , 2008 .

[23]  Rick L. Edgeman CONTROL OF INVERSE GAUSSIAN PROCESSES , 1989 .

[24]  Philippe Castagliola,et al.  The synthetic [Xbar] chart with estimated parameters , 2011 .

[25]  M. S. Aminzadeh Exponentially smoothed control charts for the inverse-gaussian process , 1993 .

[26]  M. Tweedie Statistical Properties of Inverse Gaussian Distributions. II , 1957 .

[27]  William H. Woodall,et al.  Shewhart-type charts in nonstandard situations. Discussions. Author's Replies , 1995 .

[28]  Giovanni Celano,et al.  Performance of t control charts in short runs with unknown shift sizes , 2013, Comput. Ind. Eng..

[29]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[30]  Chunguang Zhou,et al.  A Self-Starting Control Chart for Linear Profiles , 2007 .

[31]  Philippe Castagliola,et al.  Computational Statistics and Data Analysis an Ewma Chart for Monitoring the Process Standard Deviation When Parameters Are Estimated , 2022 .

[32]  Bing Xing Wang,et al.  Control Charts For Monitoring The Weibull Shape Parameter Based On Type‐II Censored Sample , 2014, Qual. Reliab. Eng. Int..

[33]  J. Leslie The Inverse Gaussian Distribution: Theory, Methodology, and Applications , 1990 .

[34]  Thong Ngee Goh,et al.  Design of exponential control charts using a sequential sampling scheme , 2006 .

[35]  Berna Yazici,et al.  Asymmetric control limits for small samples , 2009 .

[36]  Huiqiong Li,et al.  Variable selection for joint mean and dispersion models of the inverse Gaussian distribution , 2012 .

[37]  Pandu R. Tadikamalla,et al.  Kurtosis correction method for X̄ and R control charts for long‐tailed symmetrical distributions , 2007 .

[38]  Shih-Chou Kao,et al.  Normalization of the origin-shifted exponential distribution for control chart construction , 2010 .

[39]  Gauri Shankar,et al.  CSCC for mean of an inverse Gaussian distribution under type I censoring , 1996 .