A Simple Approach to Calculation and Control of unstable periodic orbits in Chaotic piecewise-Linear Systems

This paper describes a simple method for calculating unstable periodic orbits (UPOs) and their control in piecewise-linear autonomous systems. The algorithm can be used to obtain any desired UPO embedded in a chaotic attractor, and the UPO can be stabilized by a simple state feedback control. A brief stability analysis of the controlled system is also given.

[1]  Z. Galias,et al.  Investigations of periodic orbits in electronic circuits with interval Newton method , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[2]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[3]  Chen Guanrong Controlling Bifurcations in Dynamical Systems , 2001 .

[4]  James A. Yorke,et al.  Border-collision bifurcations in the buck converter , 1998 .

[5]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[6]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  L. Pontryagin,et al.  Ordinary differential equations , 1964 .

[9]  L. Duchesne Using characteristic multiplier loci to predict bifurcation phenomena and chaos-a tutorial , 1993 .

[10]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[11]  Xiaoning Dong,et al.  Controlling Chua's Circuit , 1993, Chua's Circuit.

[12]  Steven R. Bishop,et al.  Self-locating control of chaotic systems using Newton algorithm , 1996 .

[13]  Maciej Ogorzalek Chaos and Complexity in Nonlinear Electronic Circuits , 1997 .

[14]  James W. Begun,et al.  Chaos and Complexity , 1994 .

[15]  Leon O. Chua,et al.  Efficient solution of the variational equation for piecewise-linear differential equations , 1986 .

[16]  E. Kostelich,et al.  Characterization of an experimental strange attractor by periodic orbits. , 1989, Physical review. A, General physics.

[17]  T. Saito An approach toward higher dimensional hysteresis chaos generators , 1990 .

[18]  Peter Schmelcher,et al.  SYSTEMATIC COMPUTATION OF THE LEAST UNSTABLE PERIODIC ORBITS IN CHAOTIC ATTRACTORS , 1998 .

[19]  Michael Peter Kennedy Chaos in the Colpitts oscillator , 1994 .