Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes

To investigate the imprint on the gravitational-wave emission from extreme mass-ratio inspirals in non-pure Kerr spacetimes, we have studied the “kludge” waveforms generated in highly-accurate, numerically-generated spacetimes containing a black hole and a self-gravitating, homogeneous torus with comparable mass and spin. In order to maximize their impact on the produced waveforms, we have considered tori that are compact, massive and close to the central black hole, investigating under what conditions the LISA experiment could detect their presence. Our results show that for a large portion of the space of parameters the waveforms produced by EMRIs in these black hole-torus systems are indistinguishable from pure-Kerr waveforms. Hence, a “confusion problem” will be present for observations carried out over a timescale below or comparable to the dephasing time.

[1]  Richard H. Price,et al.  Black Holes , 1997 .

[2]  J. Gair,et al.  'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole , 2007 .

[3]  Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes , 2006, gr-qc/0612029.

[4]  S. Drasco Strategies for observing extreme mass ratio inspirals , 2006, gr-qc/0604115.

[5]  R. Narayan,et al.  On the Nature of the Compact Dark Mass at the Galactic Center , 2005, astro-ph/0512211.

[6]  J. Gair,et al.  Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.

[7]  A. Natarajan,et al.  Inner caustics of cold dark matter halos , 2005, astro-ph/0510743.

[8]  S. Babak,et al.  Mapping spacetimes with LISA: inspiral of a test body in a ‘quasi-Kerr’ field , 2005, gr-qc/0510057.

[9]  S. Hughes,et al.  Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.

[10]  E. Rosenthal Construction of the second-order gravitational perturbations produced by a compact object , 2005, gr-qc/0602066.

[11]  H. Nakano,et al.  Adiabatic Evolution of Orbital Parameters in Kerr Spacetime , 2005, gr-qc/0511151.

[12]  C. Lousto,et al.  Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation , 2005, gr-qc/0510019.

[13]  Limitations of the adiabatic approximation to the gravitational self-force , 2005, gr-qc/0509122.

[14]  K. Glampedakis Extreme mass ratio inspirals: LISA's unique probe of black hole gravity , 2005, gr-qc/0509024.

[15]  H. Nakano,et al.  Adiabatic Radiation Reaction to Orbits in Kerr Spacetime , 2005, gr-qc/0506092.

[16]  M. Ansorg,et al.  Black holes surrounded by uniformly rotating rings , 2005, Annalen der Physik.

[17]  J. Gair,et al.  Gravitational-wave signature of an inspiral into a supermassive horizonless object , 2004, astro-ph/0411478.

[18]  Gravitational vacuum condensate stars. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Phinney,et al.  Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.

[20]  S. Hughes,et al.  Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.

[21]  J. Primack,et al.  Dark matter profile in the galactic center. , 2003, Physical review letters.

[22]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[23]  D. Rouan,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[24]  Y. Mino Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.

[25]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[26]  J. Huré Origin of non-Keplerian motions of masers in NGC 1068 , 2002, astro-ph/0210180.

[27]  S. Larson,et al.  Unequal arm space-borne gravitational wave detectors , 2002, gr-qc/0206081.

[28]  S. Hughes,et al.  Approximating the inspiral of test bodies into Kerr black holes , 2002, gr-qc/0205033.

[29]  D. Kennefick,et al.  Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction , 2002, gr-qc/0203086.

[30]  W. Schmidt Celestial mechanics in Kerr spacetime , 2002, gr-qc/0202090.

[31]  E. Poisson,et al.  Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes , 2000, gr-qc/0012057.

[32]  P. Ullio,et al.  Dark-matter spike at the galactic center? , 2001, astro-ph/0101481.

[33]  P. Salucci The constant-density region of the dark haloes of spiral galaxies , 2000, astro-ph/0007389.

[34]  G. B. Cook Initial Data for Numerical Relativity , 2000, Living reviews in relativity.

[35]  Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations , 2000, gr-qc/0007087.

[36]  S. Larson,et al.  Sensitivity curves for spaceborne gravitational wave interferometers , 1999, gr-qc/9909080.

[37]  J. Silk,et al.  Dark matter annihilation at the galactic center , 1999, astro-ph/9906391.

[38]  P. Sikivie Caustic ring singularity , 1999, astro-ph/9902210.

[39]  D. Tsiklauri,et al.  Sagittarius A*: A Supermassive Black Hole or a Spatially Extended Object? , 1998, astro-ph/9808219.

[40]  Scalar waves produced by a scalar charge orbiting a massive body with arbitrary multipole moments , 1997 .

[41]  F. D. Ryan Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral , 1997 .

[42]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[43]  R. Wald,et al.  Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime , 1996, gr-qc/9610053.

[44]  Takahiro Tanaka,et al.  Gravitational radiation reaction to a particle motion , 1996, gr-qc/9606018.

[45]  Balasubramanian,et al.  Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.

[46]  Ryan Effect of gravitational radiation reaction on nonequatorial orbits around a Kerr black hole. , 1995, Physical review. D, Particles and fields.

[47]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[48]  F. D. Ryan,et al.  Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. , 1995, Physical review. D, Particles and fields.

[49]  P. Kordas Reflection-symmetric, asymptotically flat solutions of the vacuum axistationary Einstein equations , 1995 .

[50]  R. Meinel,et al.  Asymptotically flat solutions to the Ernst equation with reflection symmetry , 1995, gr-qc/0302114.

[51]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[52]  F. D. Ryan,et al.  Effect of gravitational radiation reaction on circular orbits around a spinning black hole. , 1995, Physical review. D, Particles and fields.

[53]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[54]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[55]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[56]  C. Hoenselaers,et al.  Multipole moments of axisymmetric systems in relativity , 1989 .

[57]  D. Gal’tsov Radiation reaction in the Kerr gravitational field , 1982 .

[58]  Takashi Nakamura,et al.  Gravitational Radiation from a Kerr Black Hole. I. Formulation and a Method for Numerical Analysis , 1982 .

[59]  M. Sasaki,et al.  On a Semi-Relativistic Treatment of the Gravitational Radiation from a Mass Thrusted into a Black Hole , 1981 .

[60]  W. Press Gravitational radiation from sources which extend into their own wave zone , 1977 .

[61]  R. O. Hansen Multipole moments of stationary space-times , 1974 .

[62]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[63]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[64]  J. Bardeen Rapidly rotating stars, disks, and black holes. , 1973 .

[65]  D. Christodoulou Reversible and Irreversible Transformations in Black-Hole Physics , 1970 .

[66]  R. Geroch Multipole Moments. II. Curved Space , 1970 .

[67]  D. Sciama,et al.  Generally Covariant Integral Formulation of Einstein's Field Equations , 1969 .

[68]  J. Hartle,et al.  Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars , 1968 .

[69]  J. Hartle Slowly Rotating Relativistic Stars. I. Equations of Structure , 1967 .

[70]  In Gravitation: an introduction to current research , 1962 .

[71]  A. Komar Covariant conservation laws in general relativity , 1959 .