Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection

Capacitive detection limits the performance of capacitive micromachined ultrasonic transducers (CMUTs) by providing poor sensitivity below megahertz frequencies and limiting acoustic power output by imposing constraints on the membrane-substrate gap height. In this paper, an integrated optical interferometric detection method for CMUTs, which provides high displacement sensitivity independent of operation frequency and device capacitance, is reported. The method also enables optoelectronics integration in a small volume and provides optoelectronic isolation between transmit and receive electronics. Implementation of the method involves fabricating CMUTs on transparent substrates and shaping the electrode under each individual CMUT membrane in the form of an optical diffraction grating. Each CMUT membrane thus forms a phase-sensitive optical diffraction grating structure that is used to measure membrane displacements down to 2/spl times/10/sup -4/ /spl Aring///spl radic/Hz level in the dc to 2-MHz range. Test devices are fabricated on quartz substrates, and ultrasonic array imaging in air is performed using a single 4-mm square CMUT consisting of 19/spl times/19 array of membranes operating at 750 kHz.

[1]  Neal A. Hall,et al.  Micromachined capacitive transducers with improved optical detection for ultrasound applications in air , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[2]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[3]  B. Khuri-Yakub,et al.  Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  F. Degertekin,et al.  An integrated optical detection method for capacitive micromachined ultrasonic transducers , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[5]  Todd Sulchek,et al.  Parallel atomic force microscopy with optical interferometric detection , 2001 .

[6]  B. Khuri-Yakub,et al.  Surface micromachined capacitive ultrasonic transducers , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  D. Schindel,et al.  The design and characterization of micromachined air-coupled capacitance transducers , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  S. Ergun,et al.  Highly integrated 2-D capacitive micromachined ultrasonic transducers , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[9]  M. O'Donnell,et al.  High frequency ultrasound imaging with optical arrays , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  H. Sontag,et al.  Optical Detection of Nanosecond Acoustic Pulses , 1986, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  O. Oralkan,et al.  Simulation and experimental characterization of a 2-D capacitive micromachined ultrasonic transducer array element , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  Characterization of capacitive micromachined ultrasonic transducers in air using optical measurements , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[13]  David A. Hutchins,et al.  Surface metrology using reflected ultrasonic signals in air , 2002 .

[14]  Characterization of transducer arrays by laser interferometry: influence of acousto-optic interactions on displacement measurements in water , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[15]  S. Senturia Microsystem Design , 2000 .

[16]  Neal A. Hall,et al.  Capacitive micromachined ultrasonic transducers with integrated optoelectronic readout , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[17]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[18]  Abdullah Atalar,et al.  Analysis and design of an interdigital cantilever as a displacement sensor , 1998 .

[19]  S.T. Hansen,et al.  Improved modeling and design of microphones using radio frequency detection with capacitive micromachined ultrasonic transducers , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[20]  L. Medina,et al.  Multiple target 3D location airborne ultrasonic system , 2001 .

[21]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[22]  Matthew O'Donnell,et al.  High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film , 2001 .

[23]  O. Solgaard,et al.  Deformable grating optical modulator. , 1992, Optics letters.

[24]  S.T. Hansen,et al.  Air-coupled nondestructive evaluation using micromachined ultrasonic transducers , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[25]  F. Degertekin,et al.  Integrated optical interferometric detection method for micromachined capacitive acoustic transducers , 2002 .

[26]  Paul C. Beard,et al.  Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer , 1997 .

[27]  B. Khuri-Yakub,et al.  A surface micromachined electrostatic ultrasonic air transducer , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  A. G. Bashford,et al.  Chromatic aberration of an air-coupled ultrasonic Fresnel zone-plate , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  M. O'Donnell,et al.  High frequency optoacoustic arrays using etalon detection , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Ekmel Ozbay,et al.  A new detection method for capacitive micromachined ultrasonic transducers , 2001 .