Droplet epitaxy of nanostructures

The droplet epitaxy is an innovative growth method, performed in the molecular beam epitaxy environment, for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. Droplet epitaxy is based on the split of the deposition of III- and V-column elements at controlled temperatures and fluxes. The first step of droplet epitaxy is the formation of nanoscale metal atoms reservoirs on the growth surface in forms of nanometre-size droplets with small size dispersion. The metallic droplets on the surface will constitute the group III localised sources from which the nanostructures will evolve. Second, and more relevant for the nanostructure shape control, is the supply of group V elements at different temperatures and fluxes. This allows for the possibility to finely control, through flux and temperature, the transformation kinetics of the metal droplets into III–V nanocrystals, thus leading to the formation of nanostructures with complex and controlled shapes. In this chapter, droplet epitaxy founding concepts are introduced. A detailed review of the droplet epitaxy fabrication procedure of III–V nanostructures, as well of the main droplet epitaxy achievements, is presented.

[1]  J. A. Töfflinger,et al.  Single-photon emission from InGaAs quantum dots grown on (111) GaAs , 2010 .

[2]  Kyland Holmes,et al.  Self-organization of quantum-dot pairs by high-temperature droplet epitaxy , 2006, Nanoscale Research Letters.

[3]  T. Isu,et al.  Real-time μ-RHEED observations of GaAs surfaces during growth with alternating source supply , 1991 .

[4]  Zh. M. Wang,et al.  Various Quantum- and Nano-Structures by III–V Droplet Epitaxy on GaAs Substrates , 2009, Nanoscale research letters.

[5]  Kazuaki Sakoda,et al.  Self-assembly of concentric quantum double rings. , 2005, Nano letters.

[6]  A. Schramm,et al.  Regimes of GaAs quantum dot self-assembly by droplet epitaxy , 2007 .

[7]  B. Joyce,et al.  Dynamic RHEED observations of the MBE growth of GaAs , 1984 .

[8]  Baolai Liang,et al.  Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100) , 2007 .

[9]  S. Sanguinetti,et al.  Individual GaAs quantum emitters grown on Ge substrates , 2011 .

[10]  J. Osaka,et al.  Al‐Ga monolayer lateral growth observed in situ by scanning electron microscopy , 1991 .

[11]  S. Sanguinetti,et al.  Fabrication of high efficiency III-V quantum nanostructures at low thermal budget on Si , 2009 .

[12]  G. Salamo,et al.  InGaAs quantum dot molecules around self-assembled GaAs nanomound templates , 2006 .

[13]  M. Kastner,et al.  Kondo effect in a single-electron transistor , 1997, Nature.

[14]  A. Stemmann,et al.  Local droplet etching of nanoholes and rings on GaAs and AlGaAs surfaces , 2008 .

[15]  R. Nötzel,et al.  Coupling of single InGaAs quantum dots to the plasmon resonance of a metal nanocrystal , 2010 .

[16]  H. Sakaki,et al.  Optical properties of GaSb/GaAs type-ІІ quantum dots grown by droplet epitaxy , 2009 .

[17]  M. Kawashima,et al.  Migration-Enhanced Epitaxy of GaAs and AlGaAs , 1988 .

[18]  K. Sakoda,et al.  GaAs∕AlGaAs quantum dot laser fabricated on GaAs (311)A substrate by droplet epitaxy , 2008 .

[19]  J. Massies,et al.  Surface stoichiometry variation associated with GaAs (001) reconstruction transitions , 1991 .

[20]  A D Yoffe,et al.  Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .

[21]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[22]  Katsuyuki Watanabe,et al.  Fabrication of GaAs Quantum Dots by Modified Droplet Epitaxy , 2000 .

[23]  K. Sakoda,et al.  Self-Assembly of Symmetric GaAs Quantum Dots on (111)A Substrates: Suppression of Fine-Structure Splitting , 2010 .

[24]  Chanro Park,et al.  Formation of self-assembled GaAs/AlGaAs quantum dots by low-temperature epitaxy , 1998 .

[25]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[26]  A. Ohtake,et al.  Two types of structures for the GaAs(001)-c(4×4) surface , 2003 .

[27]  J. Leem,et al.  Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy , 2000 .

[28]  J. Venables Atomic processes in crystal growth , 1994 .

[29]  K. Sakoda,et al.  Unstrained GaAs Quantum Dashes Grown on GaAs(001) Substrates by Droplet Epitaxy , 2010 .

[30]  Daniel Granados,et al.  In(Ga)As self-assembled quantum ring formation by molecular beam epitaxy , 2003 .

[31]  G. Kido,et al.  Lasing in GaAs∕AlGaAs self-assembled quantum dots , 2006 .

[32]  Shiro Tsukamoto,et al.  New Self-Organized Growth Method for InGaAs Quantum Dots on GaAs(001) Using Droplet Epitaxy , 1999 .

[33]  K. Wada,et al.  In situ observation of molecular beam epitaxy of GaAs and AlGaAs under deficient As4 flux by scanning reflection electron microscopy , 1989 .

[34]  Chanro Park,et al.  Fabrication Of Self-Assembled GaAs/AIGaAs Quantum Dots By Low-Temperature Droplet Epitaxy , 1998, Digest of Papers. Microprocesses and Nanotechnology'98. 198 International Microprocesses and Nanotechnology Conference (Cat. No.98EX135).

[35]  T. Chikyow,et al.  MBE Growth Method for Pyramid-Shaped GaAs Micro Crystals on ZnSe(001) Surface Using Ga Droplets , 1990 .

[36]  M. O. Manasreh,et al.  Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. , 2010, Nano letters.

[37]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[38]  Kenji Watanabe,et al.  Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer , 2003 .

[39]  D. Fuster,et al.  Low density InAs quantum dots with control in energy emission and top surface location , 2008 .

[40]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[41]  M. Umeno,et al.  AlGaAs/GaAs light-emitting diode on a Si substrate with a self-formed GaAs islands active region grown by droplet epitaxy , 1996 .

[42]  S. Sanguinetti,et al.  Rapid thermal annealing effects on self-assembled quantum dot and quantum ring structures , 2008 .

[43]  Kenji Watanabe,et al.  Effects of post-growth annealing on the optical properties of self-assembled GaAs/AlGaAs quantum dots , 2002 .

[44]  C. Heyn,et al.  Optical Properties of GaAs Quantum Dots Fabricated by Filling of Self-Assembled Nanoholes , 2009, Nanoscale research letters.

[45]  S. Sanguinetti,et al.  Self-assembled GaAs/AlGaAs coupled quantum ring-disk structures by droplet epitaxy , 2010, Nanotechnology.

[46]  S. Sanguinetti,et al.  Electron-phonon interaction in individual strain-free GaAs/Al0.3Ga0.7As quantum dots , 2006 .

[47]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes: High-speed and functional applications of resonant tunnelling diodes , 1995 .

[48]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[49]  S. Sanguinetti,et al.  Spectral diffusion and line broadening in single self-assembled GaAs∕AlGaAs quantum dot photoluminescence , 2008 .

[50]  J. Martínez‐Pastor,et al.  Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes , 2007 .

[51]  Shiro Tsukamoto,et al.  Photoluminescence studies of GaAs quantum dots grown by droplet epitaxy , 2001 .

[52]  S. Sanguinetti,et al.  Shape control via surface reconstruction kinetics of droplet epitaxy nanostructures , 2010 .

[53]  J. S. Kim,et al.  Near room temperature droplet epitaxy for fabrication of InAs quantum dots , 2004 .

[54]  H. Sakaki,et al.  Growth of GaSb dots on GaAs(100) by droplet epitaxy , 2009 .

[55]  Mullen,et al.  I-V characteristics of coupled ultrasmall-capacitance normal tunnel junctions. , 1988, Physical review. B, Condensed matter.

[56]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[57]  S. Mendach,et al.  Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes , 2009 .

[58]  T. Mano,et al.  Nanometer-scale GaAs ring structure grown by droplet epitaxy , 2005 .

[59]  K. Sakoda,et al.  Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities , 2008 .

[60]  C. Somaschini,et al.  Fabrication of multiple concentric nanoring structures. , 2009, Nano letters.

[61]  N. Ledentsov,et al.  Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots , 1998 .

[62]  G. Bauer,et al.  Structural properties of self-organized semiconductor nanostructures , 2004 .

[63]  T. Chikyow,et al.  Microcrystal growth of GaAs on a Se‐terminated GaAlAs surface for the quantum‐well box structure by sequential supplies of Ga and As molecular beams , 1992 .

[64]  S. Sanguinetti,et al.  Optical transitions in quantum ring complexes , 2005, cond-mat/0509625.

[65]  T. Noda,et al.  Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy , 2010 .

[66]  W. Schmidt,et al.  Ga-rich limit of surface reconstructions on GaAs(001): atomic structure of the (4 x 6) phase. , 2004, Physical review letters.

[67]  T. Mano,et al.  Self-assembly of laterally aligned GaAs quantum dot pairs , 2006 .

[68]  D. Fuster,et al.  Surface Localization of Buried III–V Semiconductor Nanostructures , 2009, Nanoscale research letters.

[69]  M. O. Manasreh,et al.  Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy , 2009 .

[70]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[71]  N. Koguchi,et al.  Growth of GaAs Epitaxial Microcrystals on an S-Terminated GaAs Substrate by Successive Irradiation of Ga and As Molecular Beams , 1993 .

[72]  A. Ohtake Surface reconstructions on GaAs(001) , 2008 .

[73]  K. Sakoda,et al.  Morphological control of GaAs quantum dots grown by droplet epitaxy using a thin AlGaAs capping layer , 2010 .

[74]  J. S. Kim,et al.  Ordering of high-quality InAs quantum dots on defect-free nanoholes , 2006 .

[75]  Kenji Watanabe,et al.  Low density GaAs/AlGaAs quantum dots grown by modified droplet epitaxy , 2004 .

[76]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[77]  S. Sanguinetti,et al.  Coupled quantum dot–ring structures by droplet epitaxy , 2011, Nanotechnology.

[78]  Toyohiro Chikyow,et al.  New MBE growth method for InSb quantum well boxes , 1991 .

[79]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[80]  L. Freund,et al.  SiGe Coherent Islanding and Stress Relaxation in the High Mobility Regime , 1997 .

[81]  S. Sanguinetti,et al.  Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy , 2009, Nanotechnology.