Overview: An Image of Human Neural Timing

21.

[1]  J. Duncan An adaptive coding model of neural function in prefrontal cortex , 2001 .

[2]  R. Rousseau,et al.  Time estimation and concurrent nontemporal processing: Specific interference from short-term-memory demands , 1993, Perception & psychophysics.

[3]  F. Binkofski,et al.  Cerebral correlates of working memory for temporal information , 2000, NeuroReport.

[4]  T H Rammsayer,et al.  Pharmacologic properties of the internal clock underlying time perception in humans. , 1992, Neuropsychobiology.

[5]  H. Sauer,et al.  Time estimation in schizophrenia: an fMRI study at adjusted levels of difficulty , 2001, Neuroreport.

[6]  J. Tanji,et al.  A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. , 1992, Journal of neurophysiology.

[7]  M. Mauk,et al.  Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Richard B. Ivry,et al.  Neural mechanisms of timing , 1997, Trends in Cognitive Sciences.

[9]  M. Pinsk,et al.  Functional Localization of a “Time Keeper” Function Separate from Attentional Resources and Task Strategy , 2000, NeuroImage.

[10]  J Gibbon,et al.  Cerebellar dysfunctions of temporal processing in the seconds range in humans , 1998, Neuroreport.

[11]  C. Gallistel,et al.  Toward a neurobiology of temporal cognition: advances and challenges , 1997, Current Opinion in Neurobiology.

[12]  J. Coull Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology , 1998, Progress in Neurobiology.

[13]  Penelope A. Lewis,et al.  Brain activity during non-automatic motor production of discrete multi-second intervals , 2002, Neuroreport.

[14]  P E Roland,et al.  Focal activations of human cerebral cortex during auditory discrimination. , 1981, Journal of neurophysiology.

[15]  Yasuyoshi Watanabe,et al.  Cortical Networks Recruited for Time Perception: A Monkey Positron Emission Tomography (PET) Study , 2001, NeuroImage.

[16]  Stephen McAdams,et al.  The neuroanatomical substrate of sound duration discrimination , 2002, Neuropsychologia.

[17]  R. C. Miall Neural networks and the representation of time. , 1993 .

[18]  Christopher Miall,et al.  The Storage of Time Intervals Using Oscillating Neurons , 1989, Neural Computation.

[19]  Stephen M. Rao,et al.  The evolution of brain activation during temporal processing , 2001, Nature Neuroscience.

[20]  N. Chater The Search for Simplicity: A Fundamental Cognitive Principle? , 1999 .

[21]  R. Kawashima,et al.  Human cerebellum plays an important role in memory-timed finger movement: an fMRI study. , 2000, Journal of neurophysiology.

[22]  J. Binder,et al.  Distributed Neural Systems Underlying the Timing of Movements , 1997, The Journal of Neuroscience.

[23]  F. Vidal,et al.  Activation of the supplementary motor area and of attentional networks during temporal processing , 2002, Experimental Brain Research.

[24]  T. Rammsayer,et al.  Neuropharmacological Evidence for Different Timing Mechanisms in Humans , 1999, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[25]  W H Meck,et al.  The 'internal clocks' of circadian and interval timing. , 1997, Endeavour.

[26]  C Fortin,et al.  Temporal interval production and processing in working memory , 1995, Perception & psychophysics.

[27]  S E Petersen,et al.  Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Armstrong The supraspinal control of mammalian locomotion. , 1988, The Journal of physiology.

[29]  L. Jäncke,et al.  Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. , 2000, Brain research. Cognitive brain research.

[30]  W. Meck,et al.  Dissecting the Brain's Internal Clock: How Frontal–Striatal Circuitry Keeps Time and Shifts Attention , 2002, Brain and Cognition.

[31]  Alan C. Evans,et al.  Cerebellar Contributions to Motor Timing: A PET Study of Auditory and Visual Rhythm Reproduction , 1998, Journal of Cognitive Neuroscience.

[32]  R. E. Passingham,et al.  Changes in the Human Brain during Rhythm Learning , 2001, Journal of Cognitive Neuroscience.

[33]  Y. Arshavsky,et al.  Pattern generation , 1997, Current Opinion in Neurobiology.

[34]  W. Meck Functional and neural mechanisms of interval timing , 2003 .

[35]  A. Koulakov,et al.  Model for a robust neural integrator , 2002, Nature Neuroscience.

[36]  W. Meck Neuropharmacology of timing and time perception. , 1996, Brain research. Cognitive brain research.

[37]  R. Ivry The representation of temporal information in perception and motor control , 1996, Current Opinion in Neurobiology.

[38]  D. V. von Cramon,et al.  Interval and ordinal properties of sequences are associated with distinct premotor areas. , 2001, Cerebral cortex.

[39]  A. Nobre,et al.  Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI , 1998, The Journal of Neuroscience.

[40]  L. Mitrani,et al.  Identification of short time intervals under LSD25 and mescaline. , 1977, Activitas nervosa superior.

[41]  J. Doyon,et al.  Dynamic Cortical and Subcortical Networks in Learning and Delayed Recall of Timed Motor Sequences , 2002, The Journal of Neuroscience.

[42]  T. Rammsayer,et al.  On dopaminergic modulation of temporal information processing , 1993, Biological Psychology.

[43]  S. D. Lima,et al.  Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors , 1991, Perception & psychophysics.

[44]  L. Jäncke,et al.  Tapping movements according to regular and irregular visual timing signals investigated with fMRI , 2000, Neuroreport.

[45]  R M Church,et al.  Scalar Timing in Memory , 1984, Annals of the New York Academy of Sciences.

[46]  A. Nobre,et al.  Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts , 2000, Neuropsychologia.

[47]  V. Morell Setting a biological stopwatch. , 1996, Science.

[48]  A. Friederici,et al.  Time Perception and Motor Timing: A Common Cortical and Subcortical Basis Revealed by fMRI , 2000, NeuroImage.

[49]  J. Mazziotta,et al.  Brain Activation Induced by Estimation of Duration: A PET Study , 1996, NeuroImage.

[50]  L. Jäncke,et al.  Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. , 2000, Brain research. Cognitive brain research.

[51]  J. Jonides,et al.  Storage and executive processes in the frontal lobes. , 1999, Science.

[52]  T Schubert,et al.  Cortical areas and the control of self‐determined finger movements: an fMRI study , 1998, Neuroreport.

[53]  M. Jüptner,et al.  Localization of a cerebellar timing process using PET , 1995, Neurology.

[54]  R. Passingham Attention to action. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  P. A. Lewis,et al.  Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping , 2004, Neuropsychologia.

[56]  Reto Huber,et al.  Sleep deprivation in prion protein deficient mice and control mice: genotype dependent regional rebound , 2002, Neuroreport.

[57]  Andrew Simmons,et al.  Prefrontal involvement in temporal bridging and timing movement , 1998, Neuropsychologia.

[58]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[59]  R. Ivry,et al.  Exploring the domain of the cerebellar timing system , 1996 .

[60]  Javier F. Medina,et al.  Timing Mechanisms in the Cerebellum: Testing Predictions of a Large-Scale Computer Simulation , 2000, The Journal of Neuroscience.

[61]  R. Ivry Cerebellar timing systems. , 1997, International review of neurobiology.

[62]  P. Maquet,et al.  The basic pattern of activation in motor and sensory temporal tasks: positron emission tomography data , 1997, Neuroscience Letters.

[63]  W H Meck,et al.  The 'internal clocks' of circadian and interval timing. , 1997, Endeavour.

[64]  R B Ivry,et al.  Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. , 1999, Neuropsychology.

[65]  S. Keele,et al.  Dissociation of the lateral and medial cerebellum in movement timing and movement execution , 2004, Experimental Brain Research.

[66]  M. Jüptner,et al.  The human cerebellum and temporal information processing--results from a PET experiment. , 1996, Neuroreport.

[67]  O Hikosaka,et al.  Neural Representation of a Rhythm Depends on Its Interval Ratio , 1999, The Journal of Neuroscience.

[68]  Jordan Grafman,et al.  Perceptual timing in cerebellar degeneration , 1996, Neuropsychologia.

[69]  Richard lvry,et al.  Cerebellar timing systems. , 1997 .

[70]  B. Gulyás,et al.  Cortical representation of self‐paced finger movement , 1996, Neuroreport.

[71]  L M Parsons,et al.  Exploring the Functional Neuroanatomy of Music Performance, Perception, and Comprehension , 2001, Annals of the New York Academy of Sciences.

[72]  I. M. Gelfand,et al.  Messages conveyed by spinocerebellar pathways during scratching in the cat. I. Activity of neurons of the lateral reticular nucleus , 1978, Brain Research.

[73]  T. Rammsayer Dopaminergic and Serotoninergic Influence on Duration Discrimination and Vigilance , 1989, Pharmacopsychiatry.

[74]  Y. Burnod,et al.  Neural network models of cortical functions based on the computational properties of the cerebral cortex , 1994, Journal of Physiology - Paris.

[75]  R. E. Passingham,et al.  The cerebellum and cognition: cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys , 2000, Neuropsychologia.

[76]  R. Kawashima,et al.  A positron emission tomography study of self-paced finger movements at different frequencies , 1999, Neuroscience.

[77]  S. Keele,et al.  Timing Functions of The Cerebellum , 1989, Journal of Cognitive Neuroscience.

[78]  E. Bullmore,et al.  Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI , 2000, Neuroscience & Biobehavioral Reviews.

[79]  Adrian L. Williams,et al.  Task-Related Changes in Cortical Synchronization Are Spatially Coincident with the Hemodynamic Response , 2002, NeuroImage.