Estimation récursive de la mesure invariante d'un processus de diffusion.
暂无分享,去创建一个
[1] M. Loève. On Almost Sure Convergence , 1951 .
[2] W. Feller. THE PARABOLIC DIFFERENTIAL EQUATIONS AND THE ASSOCIATED SEMI-GROUPS OF TRANSFORMATIONS , 1952 .
[3] W. Feller. Diffusion processes in one dimension , 1954 .
[4] S. Karlin,et al. A second course in stochastic processes , 1981 .
[5] R. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .
[6] Raouf A. Ibrahim,et al. Principal internal resonances in 3-DOF systems subjected to wide-band random excitation , 1989 .
[7] D. Talay. Second-order discretization schemes of stochastic differential systems for the computation of the invariant law , 1990 .
[8] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[9] O. Faure,et al. Simulation du mouvement brownien et des diffusions , 1992 .
[10] Gopal K. Basak,et al. Stability in Distribution for a Class of Singular Diffusions , 1992 .
[11] G. Pflug,et al. Stochastic approximation and optimization of random systems , 1992 .
[12] M. Piccioni,et al. An Iterative Monte Carlo Scheme for Generating Lie Group-Valued Random Variables , 1994 .
[13] P. Bressolette,et al. Quelques méthodes de résolution de problèmes de dynamique stochastique non linéaire , 1994 .
[14] Christian Soize,et al. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions , 1994, Series on Advances in Mathematics for Applied Sciences.
[15] B. Roynette,et al. Convergence rate of some semi-groups to their invariant probability , 1999 .
[16] G. Pagès,et al. Sur quelques algorithmes rcursifs pour les probabilits numriques , 2001 .
[17] Principes d’invariance par moyennisation logarithmique pour processus de markov , 2001 .
[18] D. Talay. Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .
[19] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[20] G. Pagès,et al. RECURSIVE COMPUTATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION: THE CASE OF A WEAKLY MEAN REVERTING DRIFT , 2003 .
[21] Invariance principles with logarithmic averaging for continuous local martingales , 2002 .
[22] R. Douc,et al. Practical drift conditions for subgeometric rates of convergence , 2004, math/0407122.
[23] O. Bardou. Contrôle dynamique des erreurs de simulation et d'estimation de processus de diffusion , 2005 .