Thermophysical Properties of α‐Tungsten Carbide

Upper and lower bounds for the thermal expansion of polycrystalline tungsten carbide (α-WC) are predicted at ultrahigh temperatures from low-temperature experimental data. The lower bound is obtained from an α V K T V model, where α V is the volume thermal expansion, K T the isothermal bulk modulus for a randomly oriented polycrystalline sample, and V the molar volume. For many materials, the α V K T V product approaches a constant value that is similar to the specific heat at the highest temperatures. The upper bound uses Griineisen's rule with a constant Gruneisen parameter γ at temperatures >1.3θ D (where θ D is the Debye temperature) and experimental data below that temperature. Literature data for the thermophysical properties of α-WC have been reviewed and used in our α V K T V model to calculate a lower bound for the thermal expansion at temperatures >2θ D and to calculate the temperature dependence of the bulk modulus. The ultrahigh-pressure thermal expansion has been calculated from the lower bound. Model predictions of the thermophysical properties of WC are given for an extended temperature range.

[1]  K. Becker Die Kristallstruktur und der lineare Wärmeausdehnungskoeffizient der Wolframcarbide , 1928 .

[2]  H. L. Brown,et al.  Elastic Properties of Some Polycrystalline Transition-Metal Monocarbides , 1966 .

[3]  Robert R. Reeber,et al.  Thermal expansion, molar volume and specific heat of diamond from 0 to 3000k , 1996 .

[4]  R. Reeber Thermal expansion of some group IV elements and ZnS , 1975 .

[5]  R. Reeber,et al.  Thermal defects and thermal expansion of ionic crystals at high temperatures , 1994 .

[6]  J. B. Wachtman,et al.  Exponential Temperature Dependence of Young's Modulus for Several Oxides , 1961 .

[7]  W. Kreher,et al.  Influence of anisotropic thermal expansion on internal stresses in WC hardmetals , 1986 .

[8]  D. G. Reichel,et al.  Thermal expansion of tungsten carbide at low temperature , 1989 .

[9]  R. Reeber,et al.  A simplified model for predicting high pressure thermal expansion of MgO , 1995 .

[10]  Isao Suzuki,et al.  Thermal expansion of single-crystal manganosite , 1979 .

[11]  R. Reeber,et al.  A model for evaluating and predicting high-temperature thermal expansion , 1996 .

[12]  Minyoung Lee High temperature hardness of tungsten carbide , 1983 .

[13]  R. Reeber,et al.  Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K , 1995 .

[14]  R. Reeber,et al.  Thermal expansion of alkali halides at high pressure: NaCl as an example , 1996 .

[15]  R. Reeber,et al.  Thermal Expansion of Caesium Halides with the CsCl Structure , 1995 .

[16]  R. Reeber,et al.  Thermal Expansion of Ten Grimm-Sommerfeld Compounds , 1984 .

[17]  R. S. Gilmore,et al.  Single crystal elastic constants of tungsten monocarbide , 1982 .

[18]  L. S. Levinson High‐Temperature Heat Content of Tungsten Carbide and Hafnium Carbide , 1964 .

[19]  Y. Tyan,et al.  On the elastic and thermodynamic properties of transition metal carbides , 1971 .